These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 24285087)
1. Complex force dynamics in atomic force microscopy resolved by wavelet transforms. Pukhova V; Banfi F; Ferrini G Nanotechnology; 2013 Dec; 24(50):505716. PubMed ID: 24285087 [TBL] [Abstract][Full Text] [Related]
2. Transient eigenmodes analysis of single-impact cantilever dynamics combining Fourier and wavelet transforms. Pukhova V; Banfi F; Ferrini G Nanotechnology; 2015 May; 26(17):175701. PubMed ID: 25837684 [TBL] [Abstract][Full Text] [Related]
3. Energy dissipation in multifrequency atomic force microscopy. Pukhova V; Banfi F; Ferrini G Beilstein J Nanotechnol; 2014; 5():494-500. PubMed ID: 24778976 [TBL] [Abstract][Full Text] [Related]
4. Time-frequency analysis of the tip motion in liquids using the wavelet transform in dynamic atomic force microscopy. Wang Z; Qian J; Li Y; Zhang Y; Shan G; Dou Z; Song Z; Lin R Nanotechnology; 2018 Sep; 29(38):385702. PubMed ID: 29957597 [TBL] [Abstract][Full Text] [Related]
5. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid. Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565 [TBL] [Abstract][Full Text] [Related]
6. Influence of the tip mass on the tip-sample interactions in TM-AFM. Pishkenari HN; Meghdari A Ultramicroscopy; 2011 Jul; 111(8):1423-36. PubMed ID: 21864786 [TBL] [Abstract][Full Text] [Related]
7. Single cycle and transient force measurements in dynamic atomic force microscopy. Gadelrab K; Santos S; Font J; Chiesa M Nanoscale; 2013 Nov; 5(22):10776-93. PubMed ID: 24071898 [TBL] [Abstract][Full Text] [Related]
8. Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy. Hähner G Ultramicroscopy; 2010 Jun; 110(7):801-6. PubMed ID: 20188476 [TBL] [Abstract][Full Text] [Related]
10. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM). Zhang S; Qian J; Li Y; Zhang Y; Wang Z Microsc Microanal; 2018 Jun; 24(3):256-263. PubMed ID: 29860955 [TBL] [Abstract][Full Text] [Related]
11. Dual resonance excitation system for the contact mode of atomic force microscopy. Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535 [TBL] [Abstract][Full Text] [Related]
12. Advanced tip design for liquid phase vibration mode atomic force microscopy. Muramatsu H; Yamamoto Y; Shigeno M; Shirakawabe Y; Inoue A; Kim WS; Kim SJ; Chang SM; Kim JM Anal Chim Acta; 2008 Mar; 611(2):233-8. PubMed ID: 18328326 [TBL] [Abstract][Full Text] [Related]
13. Influence of the tip mass and position on the AFM cantilever dynamics: coupling between bending, torsion and flexural modes. Mokhtari-Nezhad F; Saidi AR; Ziaei-Rad S Ultramicroscopy; 2009 Aug; 109(9):1193-202. PubMed ID: 19559530 [TBL] [Abstract][Full Text] [Related]
14. Wavelet analysis of higher harmonics in tapping mode atomic force microscopy. Wang Z; Qian J; Li Y; Zhang Y; Song Z; Dou Z; Lin R Micron; 2019 Mar; 118():58-64. PubMed ID: 30597428 [TBL] [Abstract][Full Text] [Related]
15. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method. Liu Z; Jeong Y; Menq CH Rev Sci Instrum; 2013 Feb; 84(2):023703. PubMed ID: 23464214 [TBL] [Abstract][Full Text] [Related]
16. Selective enhancement of individual cantilever high resonance modes. Penedo M; Hormeño S; Prieto P; Alvaro R; Anguita J; Briones F; Luna M Nanotechnology; 2015 Dec; 26(48):485706. PubMed ID: 26559931 [TBL] [Abstract][Full Text] [Related]
17. Practical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy. Vahdat V; Carpick RW ACS Nano; 2013 Nov; 7(11):9836-50. PubMed ID: 24131354 [TBL] [Abstract][Full Text] [Related]
18. Energy transfer between eigenmodes in multimodal atomic force microscopy. An S; Solares SD; Santos S; Ebeling D Nanotechnology; 2014 Nov; 25(47):475701. PubMed ID: 25369864 [TBL] [Abstract][Full Text] [Related]
19. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Legleiter J Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079 [TBL] [Abstract][Full Text] [Related]
20. Feedback based simultaneous correction of imaging artifacts due to geometrical and mechanical cross-talk and tip-sample stick in atomic force microscopy. Shegaonkar AC; Salapaka SM Rev Sci Instrum; 2007 Oct; 78(10):103706. PubMed ID: 17979427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]