These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24285147)

  • 61. Quasiparticle band structures of short-period superlattices and ordered alloys of AlN and GaN.
    Rubio A; Corkill JL; Cohen ML
    Phys Rev B Condens Matter; 1994 Jan; 49(3):1952-1956. PubMed ID: 10010996
    [No Abstract]   [Full Text] [Related]  

  • 62. Inversion asymmetry, hole mixing, and enhanced Pockels effect in quantum wells and superlattices.
    Zhu Bf; Chang YC
    Phys Rev B Condens Matter; 1994 Oct; 50(16):11932-11948. PubMed ID: 9975334
    [No Abstract]   [Full Text] [Related]  

  • 63. Triple excitonic mixing associated with recoupling of a Stark-localized state in coupled quantum wells confined by superlattices.
    Tokuda Y; Kanamoto K; Abe Y; Tsukada N
    Phys Rev B Condens Matter; 1991 Mar; 43(9):7170-7173. PubMed ID: 9998179
    [No Abstract]   [Full Text] [Related]  

  • 64. Interfacial stability and intermixing in thin-layer Sin/Gen superlattices.
    Kelires PC
    Phys Rev B Condens Matter; 1994 Apr; 49(16):11496-11499. PubMed ID: 10010014
    [No Abstract]   [Full Text] [Related]  

  • 65. Empirical two-band model for quantum wells and superlattices in an electric field.
    Leavitt RP
    Phys Rev B Condens Matter; 1991 Nov; 44(20):11270-11280. PubMed ID: 9999249
    [No Abstract]   [Full Text] [Related]  

  • 66. Plasmon excitations in one-dimensional lateral-quantum-wire superlattices.
    Li Q; Das Sarma S
    Phys Rev B Condens Matter; 1990 May; 41(14):10268-10271. PubMed ID: 9993432
    [No Abstract]   [Full Text] [Related]  

  • 67. Prediction of strongly enhanced two-dimensional ferromagnetic moments on metallic overlayers, interfaces, and superlattices.
    Fu CL; Freeman AJ; Oguchi T
    Phys Rev Lett; 1985 Jun; 54(25):2700-2703. PubMed ID: 10031415
    [No Abstract]   [Full Text] [Related]  

  • 68. Electronic structure of superlattices and quantum wells under uniaxial stress.
    Platero G; Altarelli M
    Phys Rev B Condens Matter; 1987 Oct; 36(12):6591-6595. PubMed ID: 9942372
    [No Abstract]   [Full Text] [Related]  

  • 69. Quantum wells and superlattices in strong time-dependent fields.
    Holthaus M; Hone D
    Phys Rev B Condens Matter; 1993 Mar; 47(11):6499-6508. PubMed ID: 10004617
    [No Abstract]   [Full Text] [Related]  

  • 70. Stark ladders in strongly coupled superlattices and their interactions with embedded quantum wells.
    Leavitt RP; Little JW
    Phys Rev B Condens Matter; 1990 Mar; 41(8):5174-5177. PubMed ID: 9994376
    [No Abstract]   [Full Text] [Related]  

  • 71. Inter-quantum-well diffusion in semiconductor superlattices.
    Lyo SK
    Phys Rev B Condens Matter; 1987 May; 35(15):8065-8073. PubMed ID: 9941143
    [No Abstract]   [Full Text] [Related]  

  • 72. Intermixing at Au-In interfaces as studied by photoelectron spectroscopy.
    Boyen H; Indlekofer G; Gantner G; Stupp H; Cossy-Favre A; Oelhafen P
    Phys Rev B Condens Matter; 1995 Jun; 51(23):17096-17099. PubMed ID: 9978723
    [No Abstract]   [Full Text] [Related]  

  • 73. Minibands in the continuum of multi-quantum-well superlattices.
    Gershoni D; Oiknine-Schlesinger J; Ehrenfreund E; Ritter D; Hamm RA; Panish MB
    Phys Rev Lett; 1993 Nov; 71(18):2975-2978. PubMed ID: 10054826
    [No Abstract]   [Full Text] [Related]  

  • 74. Quantum well states as mediators of magnetic coupling in superlattices.
    Ortega JE; Himpsel FJ
    Phys Rev Lett; 1992 Aug; 69(5):844-847. PubMed ID: 10047047
    [No Abstract]   [Full Text] [Related]  

  • 75. Magnetotransport in two-dimensional lateral superlattices.
    Lorke A; Kotthaus JP; Ploog K
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3447-3450. PubMed ID: 9999965
    [No Abstract]   [Full Text] [Related]  

  • 76. Quantum size effect in superlattices.
    Erkoç S
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3459-3461. PubMed ID: 9943266
    [No Abstract]   [Full Text] [Related]  

  • 77. Direct Measurement of Polarization-Induced Fields in GaN/AlN by Nano-Beam Electron Diffraction.
    Carvalho D; Müller-Caspary K; Schowalter M; Grieb T; Mehrtens T; Rosenauer A; Ben T; García R; Redondo-Cubero A; Lorenz K; Daudin B; Morales FM
    Sci Rep; 2016 Jun; 6():28459. PubMed ID: 27350322
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen.
    Sousa MA; Esteves TC; Sedrine NB; Rodrigues J; Lourenço MB; Redondo-Cubero A; Alves E; O'Donnell KP; Bockowski M; Wetzel C; Correia MR; Lorenz K; Monteiro T
    Sci Rep; 2015 Apr; 5():9703. PubMed ID: 25853988
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective ion-induced intermixing and damage in low-dimensional GaN/AlN quantum structures.
    Redondo-Cubero A; Lorenz K; Wendler E; Carvalho D; Ben T; Morales FM; García R; Fellmann V; Daudin B
    Nanotechnology; 2013 Dec; 24(50):505717. PubMed ID: 24285147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of the stability of InGaN/GaN multiquantum wells against ion beam intermixing.
    Redondo-Cubero A; Lorenz K; Wendler E; Magalhães S; Alves E; Carvalho D; Ben T; Morales FM; García R; O'Donnell KP; Wetzel C
    Nanotechnology; 2015 Oct; 26(42):425703. PubMed ID: 26421745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.