These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24285887)

  • 1. Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury.
    Johnson MD; Kajtaz E; Cain CM; Heckman CJ
    J Neurosci; 2013 Nov; 33(48):18806-13. PubMed ID: 24285887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-related receptive fields of spinal motoneurones with active dendrites.
    Hyngstrom A; Johnson M; Schuster J; Heckman CJ
    J Physiol; 2008 Mar; 586(6):1581-93. PubMed ID: 18238818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury.
    Rank MM; Murray KC; Stephens MJ; D'Amico J; Gorassini MA; Bennett DJ
    J Neurophysiol; 2011 Jan; 105(1):410-22. PubMed ID: 21047936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.
    Li Y; Li X; Harvey PJ; Bennett DJ
    J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats.
    Harvey PJ; Li Y; Li X; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1141-57. PubMed ID: 16282206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury.
    Li X; Murray K; Harvey PJ; Ballou EW; Bennett DJ
    J Neurophysiol; 2007 Feb; 97(2):1236-46. PubMed ID: 17079337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1158-70. PubMed ID: 16707714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic control of the excitability of hindlimb motoneurons in chronic spinal-transected salamanders.
    Chevallier S; Nagy F; Cabelguen JM
    Eur J Neurosci; 2008 Dec; 28(11):2243-53. PubMed ID: 19019203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in sensory-evoked synaptic activation of motoneurons after spinal cord injury in man.
    Norton JA; Bennett DJ; Knash ME; Murray KC; Gorassini MA
    Brain; 2008 Jun; 131(Pt 6):1478-91. PubMed ID: 18344559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic electrical properties of spinal motoneurons vary with joint angle.
    Hyngstrom AS; Johnson MD; Miller JF; Heckman CJ
    Nat Neurosci; 2007 Mar; 10(3):363-9. PubMed ID: 17293858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1171-86. PubMed ID: 16760346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis.
    ElBasiouny SM; Schuster JE; Heckman CJ
    Clin Neurophysiol; 2010 Oct; 121(10):1669-79. PubMed ID: 20462789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential activation of multiple persistent inward currents induces staircase currents in serotonergic neurons of medulla in ePet-EYFP mice.
    Cheng Y; Zhang Q; Dai Y
    J Neurophysiol; 2020 Jan; 123(1):277-288. PubMed ID: 31721638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of passive and active dendrite motoneuron pools and their differences in muscle force control.
    Elias LA; Chaud VM; Kohn AF
    J Comput Neurosci; 2012 Dec; 33(3):515-31. PubMed ID: 22562305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active dendritic integration of inhibitory synaptic inputs in vivo.
    Kuo JJ; Lee RH; Johnson MD; Heckman HM; Heckman CJ
    J Neurophysiol; 2003 Dec; 90(6):3617-24. PubMed ID: 12944534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury.
    Rank MM; Li X; Bennett DJ; Gorassini MA
    J Neurophysiol; 2007 May; 97(5):3166-80. PubMed ID: 17360828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.
    Venugopal S; Hamm TM; Crook SM; Jung R
    J Neurophysiol; 2011 Nov; 106(5):2167-79. PubMed ID: 21775715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of postsynaptic potentials evoked by sural nerve stimulation in hindlimb motoneurons from acute and chronic spinal cats.
    Baker LL; Chandler SH
    Brain Res; 1987 Sep; 420(2):340-50. PubMed ID: 3676766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses.
    Gaunt RA; Prochazka A; Mushahwar VK; Guevremont L; Ellaway PH
    J Neurophysiol; 2006 Dec; 96(6):2995-3005. PubMed ID: 16943320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.