BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24285904)

  • 1. Optimizing working memory with heterogeneity of recurrent cortical excitation.
    Kilpatrick ZP; Ermentrout B; Doiron B
    J Neurosci; 2013 Nov; 33(48):18999-9011. PubMed ID: 24285904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition.
    Brunel N; Wang XJ
    J Comput Neurosci; 2001; 11(1):63-85. PubMed ID: 11524578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory.
    van Vugt B; van Kerkoerle T; Vartak D; Roelfsema PR
    J Neurosci; 2020 Mar; 40(12):2458-2470. PubMed ID: 32051326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.
    Compte A; Brunel N; Goldman-Rakic PS; Wang XJ
    Cereb Cortex; 2000 Sep; 10(9):910-23. PubMed ID: 10982751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated neural variability in persistent state networks.
    Polk A; Litwin-Kumar A; Doiron B
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6295-300. PubMed ID: 22474377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex.
    Wang M; Yang Y; Wang CJ; Gamo NJ; Jin LE; Mazer JA; Morrison JH; Wang XJ; Arnsten AF
    Neuron; 2013 Feb; 77(4):736-49. PubMed ID: 23439125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity.
    Gutkin BS; Laing CR; Colby CL; Chow CC; Ermentrout GB
    J Comput Neurosci; 2001; 11(2):121-34. PubMed ID: 11717529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks.
    Kim R; Sejnowski TJ
    Nat Neurosci; 2021 Jan; 24(1):129-139. PubMed ID: 33288909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.
    Lim S; Goldman MS
    J Neurosci; 2014 May; 34(20):6790-806. PubMed ID: 24828633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent hippocampal neural firing and hippocampal-cortical coupling predict verbal working memory load.
    Boran E; Fedele T; Klaver P; Hilfiker P; Stieglitz L; Grunwald T; Sarnthein J
    Sci Adv; 2019 Mar; 5(3):eaav3687. PubMed ID: 30944858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.
    Wang XJ
    J Neurosci; 1999 Nov; 19(21):9587-603. PubMed ID: 10531461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic augmentation in a cortical circuit model reproduces serial dependence in visual working memory.
    Bliss DP; D'Esposito M
    PLoS One; 2017; 12(12):e0188927. PubMed ID: 29244810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A recurrent network model of somatosensory parametric working memory in the prefrontal cortex.
    Miller P; Brody CD; Romo R; Wang XJ
    Cereb Cortex; 2003 Nov; 13(11):1208-18. PubMed ID: 14576212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spiking network model of short-term active memory.
    Zipser D; Kehoe B; Littlewort G; Fuster J
    J Neurosci; 1993 Aug; 13(8):3406-20. PubMed ID: 8340815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
    Masse NY; Hodnefield JM; Freedman DJ
    J Neurosci; 2017 Jun; 37(25):6098-6112. PubMed ID: 28539423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Persistent Activity in Cortical Circuits: Possible Neural Substrates for Working Memory.
    Zylberberg J; Strowbridge BW
    Annu Rev Neurosci; 2017 Jul; 40():603-627. PubMed ID: 28772102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanced cortical microcircuitry for maintaining information in working memory.
    Lim S; Goldman MS
    Nat Neurosci; 2013 Sep; 16(9):1306-14. PubMed ID: 23955560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
    Durstewitz D; Seamans JK; Sejnowski TJ
    J Neurophysiol; 2000 Mar; 83(3):1733-50. PubMed ID: 10712493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.