BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24286270)

  • 1. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.
    Viktor MJ; Rose SH; van Zyl WH; Viljoen-Bloom M
    Biotechnol Biofuels; 2013 Nov; 6(1):167. PubMed ID: 24286270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations.
    Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of industrial
    Cripwell RA; Rose SH; Favaro L; van Zyl WH
    Biotechnol Biofuels; 2019; 12():201. PubMed ID: 31452682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural
    Gronchi N; De Bernardini N; Cripwell RA; Treu L; Campanaro S; Basaglia M; Foulquié-Moreno MR; Thevelein JM; Van Zyl WH; Favaro L; Casella S
    Front Microbiol; 2021; 12():768562. PubMed ID: 35126325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae.
    Cripwell RA; Rose SH; van Zyl WH
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28637248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter-proximal introns impact recombinant amylase expression in Saccharomyces cerevisiae.
    Schwerdtfeger KS; Myburgh MW; van Zyl WH; Viljoen-Bloom M
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37891015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges.
    Cripwell RA; Favaro L; Viljoen-Bloom M; van Zyl WH
    Biotechnol Adv; 2020; 42():107579. PubMed ID: 32593775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch.
    Myburgh MW; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32785598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S
    Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering yeasts for raw starch conversion.
    van Zyl WH; Bloom M; Viktor MJ
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1377-88. PubMed ID: 22797599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of amyA and glaA substantially increases glucoamylase activity in Aspergillus niger.
    An X; Ding C; Zhang H; Liu T; Li J
    Acta Biochim Biophys Sin (Shanghai); 2019 Jun; 51(6):638-644. PubMed ID: 31081016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):957-68. PubMed ID: 22450569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.
    de Moraes LM; Astolfi-Filho S; Oliver SG
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strategies.
    Cripwell RA; Rose SH; Viljoen-Bloom M; van Zyl WH
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30535120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from
    Xu QS; Yan YS; Feng JX
    Biotechnol Biofuels; 2016; 9():216. PubMed ID: 27777618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.
    Wang R; Wang D; Gao X; Hong J
    Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.