BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 24286493)

  • 1. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.
    Kami C; Allenbach L; Zourelidou M; Ljung K; Schütz F; Isono E; Watahiki MK; Yamamoto KT; Schwechheimer C; Fankhauser C
    Plant J; 2014 Feb; 77(3):393-403. PubMed ID: 24286493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium.
    Zhao X; Wang YL; Qiao XR; Wang J; Wang LD; Xu CS; Zhang X
    Plant Physiol; 2013 Jul; 162(3):1539-51. PubMed ID: 23674105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E
    Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.
    Lariguet P; Schepens I; Hodgson D; Pedmale UV; Trevisan M; Kami C; de Carbonnel M; Alonso JM; Ecker JR; Liscum E; Fankhauser C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10134-9. PubMed ID: 16777956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.
    Kagawa T; Kimura M; Wada M
    Plant Cell Physiol; 2009 Oct; 50(10):1774-85. PubMed ID: 19689999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation.
    Moni A; Lee AY; Briggs WR; Han IS
    Plant Biol (Stuttg); 2015 Jan; 17(1):34-40. PubMed ID: 24803136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning.
    de Carbonnel M; Davis P; Roelfsema MR; Inoue S; Schepens I; Lariguet P; Geisler M; Shimazaki K; Hangarter R; Fankhauser C
    Plant Physiol; 2010 Mar; 152(3):1391-405. PubMed ID: 20071603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling.
    Yamamoto K; Suzuki T; Aihara Y; Haga K; Sakai T; Nagatani A
    Plant Cell Physiol; 2014 Mar; 55(3):497-506. PubMed ID: 24334375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining the site of light perception and initiation of phototropism in Arabidopsis.
    Preuten T; Hohm T; Bergmann S; Fankhauser C
    Curr Biol; 2013 Oct; 23(19):1934-8. PubMed ID: 24076239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana.
    Zhao X; Zhao Q; Xu C; Wang J; Zhu J; Shang B; Zhang X
    J Integr Plant Biol; 2018 Jul; 60(7):562-577. PubMed ID: 29393576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis.
    Haga K; Hayashi K; Sakai T
    Plant Physiol; 2014 Nov; 166(3):1535-45. PubMed ID: 25281709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of the functional specificities of phototropin 1 and 2.
    Aihara Y; Tabata R; Suzuki T; Shimazaki K; Nagatani A
    Plant J; 2008 Nov; 56(3):364-75. PubMed ID: 18643969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FERONIA is involved in phototropin 1-mediated blue light phototropic growth in Arabidopsis.
    Li C; Chen J; Li X; Zhang X; Liu Y; Zhu S; Wang L; Zheng H; Luan S; Li J; Yu F
    J Integr Plant Biol; 2022 Oct; 64(10):1901-1915. PubMed ID: 35924740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental test of the adaptive evolution of phototropins: blue-light photoreceptors controlling phototropism in Arabidopsis thaliana.
    Galen C; Huddle J; Liscum E
    Evolution; 2004 Mar; 58(3):515-23. PubMed ID: 15119436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototropism: translating light into directional growth.
    Hohm T; Preuten T; Fankhauser C
    Am J Bot; 2013 Jan; 100(1):47-59. PubMed ID: 23152332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear phytochrome A signaling promotes phototropism in Arabidopsis.
    Kami C; Hersch M; Trevisan M; Genoud T; Hiltbrunner A; Bergmann S; Fankhauser C
    Plant Cell; 2012 Feb; 24(2):566-76. PubMed ID: 22374392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis.
    Willige BC; Ahlers S; Zourelidou M; Barbosa IC; Demarsy E; Trevisan M; Davis PA; Roelfsema MR; Hangarter R; Fankhauser C; Schwechheimer C
    Plant Cell; 2013 May; 25(5):1674-88. PubMed ID: 23709629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.
    Sato A; Sasaki S; Matsuzaki J; Yamamoto KT
    Plant Signal Behav; 2015; 10(3):e990838. PubMed ID: 25738325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.