BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24286669)

  • 1. The substrate binding interface of alkylpurine DNA glycosylase AlkD.
    Mullins EA; Rubinson EH; Eichman BF
    DNA Repair (Amst); 2014 Jan; 13():50-4. PubMed ID: 24286669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone.
    Rubinson EH; Christov PP; Eichman BF
    Biochemistry; 2013 Oct; 52(42):7363-5. PubMed ID: 24090276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
    Kossmann B; Ivanov I
    PLoS Comput Biol; 2014 Jul; 10(7):e1003704. PubMed ID: 24992034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).
    Lee CY; Delaney JC; Kartalou M; Lingaraju GM; Maor-Shoshani A; Essigmann JM; Samson LD
    Biochemistry; 2009 Mar; 48(9):1850-61. PubMed ID: 19219989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products.
    Mullins EA; Rubinson EH; Pereira KN; Calcutt MW; Christov PP; Eichman BF
    Methods; 2013 Nov; 64(1):59-66. PubMed ID: 23876937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of substrate specificity on initiating the base excision repair of N-methylpurines by variant human 3-methyladenine DNA glycosylases.
    Connor EE; Wilson JJ; Wyatt MD
    Chem Res Toxicol; 2005 Jan; 18(1):87-94. PubMed ID: 15651853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases.
    Mullins EA; Shi R; Kotsch LA; Eichman BF
    PLoS One; 2015; 10(5):e0127733. PubMed ID: 25978435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum.
    Lingaraju GM; Prota AE; Winkler FK
    DNA Repair (Amst); 2009 Jul; 8(7):857-64. PubMed ID: 19410520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates.
    Michelson AZ; Chen M; Wang K; Lee JK
    J Am Chem Soc; 2012 Jun; 134(23):9622-33. PubMed ID: 22554094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.
    Wang L; Lee SJ; Verdine GL
    J Biol Chem; 2015 Jul; 290(28):17096-105. PubMed ID: 25995449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I.
    Cao C; Kwon K; Jiang YL; Drohat AC; Stivers JT
    J Biol Chem; 2003 Nov; 278(48):48012-20. PubMed ID: 13129925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase.
    Sowlati-Hashjin S; Wetmore SD
    Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.