BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24287156)

  • 1. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment: recommendations from a joint EPAA--EURL ECVAM ADME workshop.
    Bessems JG; Loizou G; Krishnan K; Clewell HJ; Bernasconi C; Bois F; Coecke S; Collnot EM; Diembeck W; Farcal LR; Geraets L; Gundert-Remy U; Kramer N; Küsters G; Leite SB; Pelkonen OR; Schröder K; Testai E; Wilk-Zasadna I; Zaldívar-Comenges JM
    Regul Toxicol Pharmacol; 2014 Feb; 68(1):119-39. PubMed ID: 24287156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches.
    Coecke S; Pelkonen O; Leite SB; Bernauer U; Bessems JG; Bois FY; Gundert-Remy U; Loizou G; Testai E; Zaldívar JM
    Toxicol In Vitro; 2013 Aug; 27(5):1570-7. PubMed ID: 22771339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding synergies for 3Rs - Toxicokinetics and read-across: Report from an EPAA partners' Forum.
    Laroche C; Aggarwal M; Bender H; Benndorf P; Birk B; Crozier J; Dal Negro G; De Gaetano F; Desaintes C; Gardner I; Hubesch B; Irizar A; John D; Kumar V; Lostia A; Manou I; Monshouwer M; Müller BP; Paini A; Reid K; Rowan T; Sachana M; Schutte K; Stirling C; Taalman R; van Aerts L; Weissenhorn R; Sauer UG
    Regul Toxicol Pharmacol; 2018 Nov; 99():5-21. PubMed ID: 30144470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data.
    Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW
    Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Report from the EPAA workshop: in vitro ADME in safety testing used by EPAA industry sectors.
    Schroeder K; Bremm KD; Alépée N; Bessems JG; Blaauboer B; Boehn SN; Burek C; Coecke S; Gombau L; Hewitt NJ; Heylings J; Huwyler J; Jaeger M; Jagelavicius M; Jarrett N; Ketelslegers H; Kocina I; Koester J; Kreysa J; Note R; Poth A; Radtke M; Rogiers V; Scheel J; Schulz T; Steinkellner H; Toeroek M; Whelan M; Winkler P; Diembeck W
    Toxicol In Vitro; 2011 Apr; 25(3):589-604. PubMed ID: 21167275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of physiologically based toxicokinetic models in biologically based risk assessment.
    Watanabe KH; Chen C
    Folia Histochem Cytobiol; 2001; 39 Suppl 2():50-1. PubMed ID: 11820625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative.
    Sarigiannis DA; Karakitsios S; Dominguez-Romero E; Papadaki K; Brochot C; Kumar V; Schuhmacher M; Sy M; Mielke H; Greiner M; Mengelers M; Scheringer M
    Environ Res; 2019 May; 172():216-230. PubMed ID: 30818231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability.
    Grech A; Tebby C; Brochot C; Bois FY; Bado-Nilles A; Dorne JL; Quignot N; Beaudouin R
    Sci Total Environ; 2019 Feb; 651(Pt 1):516-531. PubMed ID: 30243171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals.
    Tebby C; van der Voet H; de Sousa G; Rorije E; Kumar V; de Boer W; Kruisselbrink JW; Bois FY; Faniband M; Moretto A; Brochot C
    Food Chem Toxicol; 2020 Aug; 142():111440. PubMed ID: 32473292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicokinetic models and related tools in environmental risk assessment of chemicals.
    Grech A; Brochot C; Dorne JL; Quignot N; Bois FY; Beaudouin R
    Sci Total Environ; 2017 Feb; 578():1-15. PubMed ID: 27842969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research.
    Clerbaux LA; Coecke S; Lumen A; Kliment T; Worth AP; Paini A
    Sci Total Environ; 2018 Dec; 645():97-108. PubMed ID: 30015123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model.
    Liu YH; Yao L; Huang Z; Zhang YY; Chen CE; Zhao JL; Ying GG
    Environ Pollut; 2022 Dec; 314():120290. PubMed ID: 36180004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds.
    Fabian E; Gomes C; Birk B; Williford T; Hernandez TR; Haase C; Zbranek R; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2019 Feb; 93(2):401-416. PubMed ID: 30552464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles.
    Chen CY; Lin Z
    Environ Int; 2024 Apr; 186():108617. PubMed ID: 38599027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of physiologically-based toxicokinetic modelling in oral-to-dermal extrapolation of threshold doses of cosmetic ingredients.
    Gajewska M; Worth A; Urani C; Briesen H; Schramm KW
    Toxicol Lett; 2014 Jun; 227(3):189-202. PubMed ID: 24731971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks.
    Armitage JM; Hughes L; Sangion A; Arnot JA
    Environ Int; 2021 Sep; 154():106557. PubMed ID: 33892222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of the physiologically-based toxicokinetic (PBTK) model for ochratoxin A (OTA) in rats and humans.
    Su BD; Li XM; Huang ZW; Wang Y; Shao J; Xu YY; Shu LX; Li YB
    Ecotoxicol Environ Saf; 2024 May; 276():116277. PubMed ID: 38604061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicokinetics and tissue distribution of deltamethrin in adult Sprague-Dawley rats.
    Kim KB; Anand SS; Kim HJ; White CA; Bruckner JV
    Toxicol Sci; 2008 Feb; 101(2):197-205. PubMed ID: 18056584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making.
    Paini A; Leonard JA; Joossens E; Bessems JGM; Desalegn A; Dorne JL; Gosling JP; Heringa MB; Klaric M; Kliment T; Kramer NI; Loizou G; Louisse J; Lumen A; Madden JC; Patterson EA; Proença S; Punt A; Setzer RW; Suciu N; Troutman J; Yoon M; Worth A; Tan YM
    Comput Toxicol; 2019 Feb; 9():61-72. PubMed ID: 31008414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.