BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24287545)

  • 1. Noninvasive high-throughput single-cell analysis of HIV protease activity using ratiometric flow cytometry.
    Gaber R; Majerle A; Jerala R; Benčina M
    Sensors (Basel); 2013 Nov; 13(12):16330-46. PubMed ID: 24287545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe.
    Jin S; Ellis E; Veetil JV; Yao H; Ye K
    Biotechnol Prog; 2011 Jul; 27(4):1107-14. PubMed ID: 21584951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of probe signal for screening of HIV-1 protease inhibitors in living cells.
    Yao H; Jin S
    Sensors (Basel); 2012 Dec; 12(12):16759-70. PubMed ID: 23223077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses.
    Bonar MM; Tabler CO; Haqqani AA; Lapointe LE; Galiatsos JA; Joussef-Piña S; Quiñones-Mateu ME; Tilton JC
    Sci Rep; 2020 Oct; 10(1):18101. PubMed ID: 33093566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Saunders MJ; Edwards BS; Zhu J; Sklar LA; Graves SW
    Curr Protoc Cytom; 2010 Oct; Chapter 13():Unit 13.12.1-17. PubMed ID: 20938917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity.
    Kitidee K; Nangola S; Hadpech S; Laopajon W; Kasinrerk W; Tayapiwatana C
    J Virol Methods; 2012 Dec; 186(1-2):21-9. PubMed ID: 22846787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometry and microscopy as means of studying single cells: a short introductional overview.
    Lindström S
    Methods Mol Biol; 2012; 853():13-5. PubMed ID: 22323136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cleavage enzyme-cytometric bead array provides biochemical profiling of resistance mutations in HIV-1 Gag and protease.
    Breuer S; Sepulveda H; Chen Y; Trotter J; Torbett BE
    Biochemistry; 2011 May; 50(20):4371-81. PubMed ID: 21452835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry.
    Valkonen M; Mojzita D; Penttilä M; Bencina M
    Appl Environ Microbiol; 2013 Dec; 79(23):7179-87. PubMed ID: 24038689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells.
    Banning C; Votteler J; Hoffmann D; Koppensteiner H; Warmer M; Reimer R; Kirchhoff F; Schubert U; Hauber J; Schindler M
    PLoS One; 2010 Feb; 5(2):e9344. PubMed ID: 20179761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes.
    Cella LN; Biswas P; Yates MV; Mulchandani A; Chen W
    Biotechnol Bioeng; 2014 Jun; 111(6):1082-7. PubMed ID: 24473897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting HIV-1 Protease Autoprocessing for High-throughput Drug Discovery and Drug Resistance Assessment.
    Huang L; Li L; Tien C; LaBarbera DV; Chen C
    Sci Rep; 2019 Jan; 9(1):301. PubMed ID: 30670786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease.
    Yedidi RS; Muhuhi JM; Liu Z; Bencze KZ; Koupparis K; O'Connor CE; Kovari IA; Spaller MR; Kovari LC
    Biochem Biophys Res Commun; 2013 Sep; 438(4):703-8. PubMed ID: 23921229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Establishment and application of a high-throughput screening assay for premature activation of HIV-1 precursors].
    Zhang Q; Li XY; Liu ZL; Jia PP; Wei XL; Zhao LX; Jiang JD; Cen S
    Yao Xue Xue Bao; 2010 Feb; 45(2):247-52. PubMed ID: 21351435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of trans-proteolytic activity of Chikungunya virus capsid protease and development of a FRET-based HTS assay.
    Aggarwal M; Sharma R; Kumar P; Parida M; Tomar S
    Sci Rep; 2015 Oct; 5():14753. PubMed ID: 26439734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow Cytometric FRET Analysis of Protein Interactions.
    Ujlaky-Nagy L; Nagy P; Szöllősi J; Vereb G
    Methods Mol Biol; 2018; 1678():393-419. PubMed ID: 29071688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.
    Hilton BJ; Wolkowicz R
    PLoS One; 2010 Jun; 5(6):e10940. PubMed ID: 20532177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.