BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 24287587)

  • 1. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries.
    Ma X; Ning G; Qi C; Xu C; Gao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage.
    Tian LL; Wei XY; Zhuang QC; Jiang CH; Wu C; Ma GY; Zhao X; Zong ZM; Sun SG
    Nanoscale; 2014 Jun; 6(11):6075-83. PubMed ID: 24781354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model.
    Kong XK; Chen QW
    Phys Chem Chem Phys; 2013 Aug; 15(31):12982-7. PubMed ID: 23817454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion Batteries.
    Tian LL; Li SB; Zhang MJ; Li SK; Lin LP; Zheng JX; Zhuang QC; Amine K; Pan F
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26722-26729. PubMed ID: 27632809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced lithium storage performance of graphene nanoribbons doped with high content of nitrogen atoms.
    Qian Y; Jiang L; Ullah Z; Guan Z; Yu C; Zhu S; Chen M; Li W; Li Q; Liu L
    Nanotechnology; 2019 May; 30(22):225401. PubMed ID: 30716720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.
    Yang Y; Ji X; Lu F; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries.
    Zhou D; Wu H; Wei Z; Han BH
    Phys Chem Chem Phys; 2013 Oct; 15(39):16898-906. PubMed ID: 24002680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable synthesis of monodisperse ultrathin SnO₂ nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties.
    Xu C; Sun J; Gao L
    Nanoscale; 2012 Sep; 4(17):5425-30. PubMed ID: 22832436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes.
    Xie Z; He Z; Feng X; Xu W; Cui X; Zhang J; Yan C; Carreon MA; Liu Z; Wang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10324-33. PubMed ID: 27071473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-standing nitrogen-doped graphene paper as electrodes for high-performance lithium/dissolved polysulfide batteries.
    Han K; Shen J; Hao S; Ye H; Wolverton C; Kung MC; Kung HH
    ChemSusChem; 2014 Sep; 7(9):2545-53. PubMed ID: 25049064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Li diffusion through doped and defected graphene.
    Das D; Kim S; Lee KR; Singh AK
    Phys Chem Chem Phys; 2013 Sep; 15(36):15128-34. PubMed ID: 23925460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors.
    Hou J; Cao C; Idrees F; Ma X
    ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage.
    Zhang Z; Calderon JE; Fahad S; Ju L; Antony DX; Yang Y; Kushima A; Zhai L
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9794-9803. PubMed ID: 33596037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germanium quantum dots embedded in N-doping graphene matrix with sponge-like architecture for enhanced performance in lithium-ion batteries.
    Qin J; Wang X; Cao M; Hu C
    Chemistry; 2014 Jul; 20(31):9675-82. PubMed ID: 25043714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.