These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24287615)

  • 21. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels.
    Gordon SE; Oakley JC; Varnum MD; Zagotta WN
    Biochemistry; 1996 Apr; 35(13):3994-4001. PubMed ID: 8672432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The single-channel dose-response relation is consistently steep for rod cyclic nucleotide-gated channels: implications for the interpretation of macroscopic dose-response relations.
    Ruiz M; Brown RL; He Y; Haley TL; Karpen JW
    Biochemistry; 1999 Aug; 38(33):10642-8. PubMed ID: 10451358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bimodal agonism in heteromeric cyclic nucleotide-gated channels.
    Chan KS; Young EC
    Channels (Austin); 2009 Nov; 3(6):427-36. PubMed ID: 19823021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the interactions between cAMP and cGMP in cyclic nucleotide-gated channels using covalently tethered ligands.
    He Y; Karpen JW
    Biochemistry; 2001 Jan; 40(1):286-95. PubMed ID: 11141082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single cyclic nucleotide-gated channels locked in different ligand-bound states.
    Ruiz ML; Karpen JW
    Nature; 1997 Sep; 389(6649):389-92. PubMed ID: 9311781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps.
    Nache V; Kusch J; Hagen V; Benndorf K
    Biophys J; 2006 May; 90(9):3146-54. PubMed ID: 16473910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the S4-S5 linker in CNG channel activation.
    Kusch J; Zimmer T; Holschuh J; Biskup C; Schulz E; Nache V; Benndorf K
    Biophys J; 2010 Oct; 99(8):2488-96. PubMed ID: 20959089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand-binding domain subregions contributing to bimodal agonism in cyclic nucleotide-gated channels.
    Wong WF; Chan KS; Michaleski MS; Haesler A; Young EC
    J Gen Physiol; 2011 Jun; 137(6):591-603. PubMed ID: 21624949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiological characteristics of rat gustatory cyclic nucleotide--gated channel expressed in Xenopus oocytes.
    Lee HM; Park YS; Kim W; Park CS
    J Neurophysiol; 2001 Jun; 85(6):2335-49. PubMed ID: 11387380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation.
    Boassa D; Yool AJ
    BMC Physiol; 2003 Oct; 3():12. PubMed ID: 14561230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Family of prokaryote cyclic nucleotide-modulated ion channels.
    Brams M; Kusch J; Spurny R; Benndorf K; Ulens C
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7855-60. PubMed ID: 24821777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The glutamic acid-rich protein is a gating inhibitor of cyclic nucleotide-gated channels.
    Michalakis S; Zong X; Becirovic E; Hammelmann V; Wein T; Wanner KT; Biel M
    J Neurosci; 2011 Jan; 31(1):133-41. PubMed ID: 21209198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multimerization of the ligand binding domains of cyclic nucleotide-gated channels.
    Matulef K; Zagotta WN
    Neuron; 2002 Sep; 36(1):93-103. PubMed ID: 12367509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the cooperative subunit action in a multimeric membrane receptor.
    Wongsamitkul N; Nache V; Eick T; Hummert S; Schulz E; Schmauder R; Schirmeyer J; Zimmer T; Benndorf K
    Sci Rep; 2016 Feb; 6():20974. PubMed ID: 26858151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic nucleotide-gated channels.
    Biel M; Michalakis S
    Handb Exp Pharmacol; 2009; (191):111-36. PubMed ID: 19089328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional characterization and optimization of a bacterial cyclic nucleotide-gated channel.
    Morgan JLW; Evans EGB; Zagotta WN
    J Biol Chem; 2019 May; 294(18):7503-7515. PubMed ID: 30885945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes.
    Podda MV; Leone L; Piacentini R; Cocco S; Mezzogori D; D'Ascenzo M; Grassi C
    Glia; 2012 Sep; 60(9):1391-405. PubMed ID: 22653779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three residues predicted by molecular modeling to interact with the purine moiety alter ligand binding and channel gating in cyclic nucleotide-gated channels.
    Scott SP; Tanaka JC
    Biochemistry; 1998 Dec; 37(49):17239-52. PubMed ID: 9860838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
    Mazzolini M; Punta M; Torre V
    Biophys J; 2002 Dec; 83(6):3283-95. PubMed ID: 12496096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.
    Meighan PC; Meighan SE; Rich ED; Brown RL; Varnum MD
    Channels (Austin); 2012; 6(3):181-96. PubMed ID: 22699690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.