BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1314 related articles for article (PubMed ID: 24287981)

  • 1. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W; He J; Sang F; Ding B; Chen L; Cui S; Li K; Han Q; Tan W
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():342-51. PubMed ID: 26478319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering.
    Zhu J; Luo J; Zhao X; Gao J; Xiong J
    J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior.
    Wei K; Li Y; Kim KO; Nakagawa Y; Kim BS; Abe K; Chen GQ; Kim IS
    J Biomed Mater Res A; 2011 Jun; 97(3):272-80. PubMed ID: 21442728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.
    Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    J Colloid Interface Sci; 2016 Jun; 472():16-33. PubMed ID: 26998786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers.
    Wang S; Zhang Y; Wang H; Dong Z
    Int J Biol Macromol; 2011 Mar; 48(2):345-53. PubMed ID: 21182858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.