These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 24288269)
1. Effect of split foliar fertilisation on the quality and quantity of active constituents in saffron (Crocus sativus L.). Rabani-Foroutagheh M; Hamidoghli Y; Mohajeri SA J Sci Food Agric; 2014 Jul; 94(9):1872-8. PubMed ID: 24288269 [TBL] [Abstract][Full Text] [Related]
2. Characterisation of secondary metabolites in saffron from central Italy (Cascia, Umbria). Cossignani L; Urbani E; Simonetti MS; Maurizi A; Chiesi C; Blasi F Food Chem; 2014 Jan; 143():446-51. PubMed ID: 24054265 [TBL] [Abstract][Full Text] [Related]
3. The effect of salt stress on the production of apocarotenoids and the expression of genes related to their biosynthesis in saffron. Moslemi FS; Vaziri A; Sharifi G; Gharechahi J Mol Biol Rep; 2021 Feb; 48(2):1707-1715. PubMed ID: 33611780 [TBL] [Abstract][Full Text] [Related]
4. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944 [TBL] [Abstract][Full Text] [Related]
7. Bacillus subtilis FZB24 affects flower quantity and quality of saffron (Crocus sativus). Sharaf-Eldin M; Elkholy S; Fernández JA; Junge H; Cheetham R; Guardiola J; Weathers P Planta Med; 2008 Aug; 74(10):1316-20. PubMed ID: 18622904 [TBL] [Abstract][Full Text] [Related]
8. Effects of Corm Treatment with Cold Plasma and Electromagnetic Field on Growth and Production of Saffron Metabolites in Mildažienė V; Žūkienė R; Fomins LD; Naučienė Z; Minkutė R; Jarukas L; Drapak I; Georgiyants V; Novickij V; Koga K; Shiratani M; Mykhailenko O Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408740 [No Abstract] [Full Text] [Related]
9. Quantitation of Crocins and picrocrocin in saffron by HPLC: application to quality control and phytochemical differentiation from other crocus taxa. Koulakiotis NS; Gikas E; Iatrou G; Lamari FN; Tsarbopoulos A Planta Med; 2015 May; 81(7):606-12. PubMed ID: 26018797 [TBL] [Abstract][Full Text] [Related]
11. Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Moratalla-López N; Parizad S; Habibi MK; Winter S; Kalantari S; Bera S; Lorenzo C; García-Rodríguez MV; Dizadji A; Alonso GL Food Chem; 2021 Feb; 337():127786. PubMed ID: 32795861 [TBL] [Abstract][Full Text] [Related]
12. Effect of ultrasonic waves on crocin and safranal content and expression of their controlling genes in suspension culture of saffron (Crocus sativus L.). Taherkhani T; Asghari Zakaria R; Omidi M; Zare N Nat Prod Res; 2019 Feb; 33(4):486-493. PubMed ID: 29124962 [TBL] [Abstract][Full Text] [Related]
13. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Parizad S; Dizadji A; Habibi MK; Winter S; Kalantari S; Movi S; Lorenzo Tendero C; Alonso GL; Moratalla-Lopez N Food Chem; 2019 Oct; 295():387-394. PubMed ID: 31174773 [TBL] [Abstract][Full Text] [Related]
15. Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-D-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). Kyriakoudi A; O'Callaghan YC; Galvin K; Tsimidou MZ; O'Brien NM J Agric Food Chem; 2015 Oct; 63(39):8662-8. PubMed ID: 26340688 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different tandem mass spectrometric techniques (ESI-IT, ESI- and IP-MALDI-QRTOF and vMALDI-TOF/RTOF) for the analysis of crocins and picrocrocin from the stigmas of Crocus sativus L. Koulakiotis NS; Pittenauer E; Halabalaki M; Tsarbopoulos A; Allmaier G Rapid Commun Mass Spectrom; 2012 Mar; 26(6):670-8. PubMed ID: 22328221 [TBL] [Abstract][Full Text] [Related]
17. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Imenshahidi M; Hosseinzadeh H; Javadpour Y Phytother Res; 2010 Jul; 24(7):990-4. PubMed ID: 20013822 [TBL] [Abstract][Full Text] [Related]
18. Extracted apocarotenoids from saffron stigmas and evaluated the quality of saffron. Xiaobin F; Xiaodong Q; Shuwen H; Chong Y; Yumei Y; Guifen Z Nat Prod Res; 2018 Jan; 32(2):225-228. PubMed ID: 28629221 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of corm origin and climatic conditions on saffron (Crocus sativus L.) yield and quality. Cardone L; Castronuovo D; Perniola M; Cicco N; Candido V J Sci Food Agric; 2019 Oct; 99(13):5858-5869. PubMed ID: 31206680 [TBL] [Abstract][Full Text] [Related]
20. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Escribano J; Alonso GL; Coca-Prados M; Fernandez JA Cancer Lett; 1996 Feb; 100(1-2):23-30. PubMed ID: 8620447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]