BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24288278)

  • 1. Proteomic identification of p38 MAP kinase substrates using in vitro phosphorylation.
    Iida N; Fujita M; Miyazawa K; Kobayashi M; Hattori S
    Electrophoresis; 2014 Feb; 35(4):554-62. PubMed ID: 24288278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE.
    Kosako H; Motani K
    Methods Mol Biol; 2017; 1487():137-149. PubMed ID: 27924564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate.
    Ueda K; Kosako H; Fukui Y; Hattori S
    J Biol Chem; 2004 Oct; 279(40):41815-21. PubMed ID: 15271996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE.
    Motani K; Kosako H
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):57-61. PubMed ID: 29883688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in Arabidopsis thaliana by quantitative phosphoproteomic analysis.
    Rayapuram N; Bonhomme L; Bigeard J; Haddadou K; Przybylski C; Hirt H; Pflieger D
    J Proteome Res; 2014 Apr; 13(4):2137-51. PubMed ID: 24601666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing phosphoproteins playing role in tobacco pollen activated in vitro.
    Fíla J; Matros A; Radau S; Zahedi RP; Capková V; Mock HP; Honys D
    Proteomics; 2012 Nov; 12(21):3229-50. PubMed ID: 22976843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches.
    Powell DW; Pierce WM; McLeish KR
    Mass Spectrom Rev; 2005; 24(6):847-64. PubMed ID: 15619233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation.
    Hutter D; Chen P; Barnes J; Liu Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis.
    Machida M; Kosako H; Shirakabe K; Kobayashi M; Ushiyama M; Inagawa J; Hirano J; Nakano T; Bando Y; Nishida E; Hattori S
    FEBS J; 2007 Mar; 274(6):1576-87. PubMed ID: 17480206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis.
    Deng Z; Bu S; Wang ZY
    Methods Mol Biol; 2012; 876():47-66. PubMed ID: 22576085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale identification of phosphorylation sites for profiling protein kinase selectivity.
    Imamura H; Sugiyama N; Wakabayashi M; Ishihama Y
    J Proteome Res; 2014 Jul; 13(7):3410-9. PubMed ID: 24869485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth.
    Hong Z; Zhang QY; Liu J; Wang ZQ; Zhang Y; Xiao Q; Lu J; Zhou HY; Chen SD
    J Proteome Res; 2009 Jun; 8(6):2768-87. PubMed ID: 19290620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells.
    Santamaría E; Sánchez-Quiles V; Fernández-Irigoyen J; Corrales FJ
    Methods Mol Biol; 2012; 909():165-80. PubMed ID: 22903716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAP kinases p38 and JNK are activated by the steroid hormone 1alpha,25(OH)2-vitamin D3 in the C2C12 muscle cell line.
    Buitrago CG; Ronda AC; de Boland AR; Boland R
    J Cell Biochem; 2006 Mar; 97(4):698-708. PubMed ID: 16215981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified metal-oxide affinity enrichment combined with 2D-PAGE and analysis of phosphoproteomes.
    Colby T; Röhrig H; Harzen A; Schmidt J
    Methods Mol Biol; 2011; 779():273-86. PubMed ID: 21837573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome analysis.
    Raggiaschi R; Gotta S; Terstappen GC
    Biosci Rep; 2005; 25(1-2):33-44. PubMed ID: 16222418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.