BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24288992)

  • 41. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.
    Serrano M; Montesinos I; Cardador MJ; Silva M; Gallego M
    Sci Total Environ; 2015 Jun; 517():246-58. PubMed ID: 25771439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment.
    Xu Z; Li X; Hu X; Yin D
    Chemosphere; 2017 Oct; 184():253-260. PubMed ID: 28601007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organic micropollutants and disinfection byproducts removal from drinking water using concurrent anion exchange and chlorination process.
    Li X; Li A; Li Z; Sun H; Shi P; Zhou Q; Shuang C
    Sci Total Environ; 2021 Jan; 752():141470. PubMed ID: 32889255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release.
    Kurajica L; Ujević Bošnjak M; Kinsela AS; Štiglić J; Waite TD; Capak K; Pavlić Z
    Sci Total Environ; 2021 Mar; 762():144159. PubMed ID: 33360458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low Parts Per Trillion Detection of Iodinated Disinfection Byproducts in Drinking Water and Urine using Vacuum-Assisted Sorbent Extraction and GC-MS/MS.
    Justen PT; Kilpatrick ML; Soto JL; Richardson SD
    Environ Sci Technol; 2024 Jan; 58(2):1321-1328. PubMed ID: 38159052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Formation of disinfection by-products: temperature effect and kinetic modeling].
    Zhang XL; Yang HW; Wang XM; Fu J; Xie YF
    Huan Jing Ke Xue; 2012 Nov; 33(11):4046-51. PubMed ID: 23323444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk.
    Kolb C; Francis RA; VanBriesen JM
    J Environ Sci (China); 2017 Aug; 58():191-207. PubMed ID: 28774609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monitoring trihalomethanes in chlorinated waters using a dispersive liquid-liquid microextraction method with a non-chlorinated organic solvent and gas chromatography-mass spectrometry.
    Pacheco-Fernández I; Herrera-Fuentes A; Delgado B; Pino V; Ayala JH; Afonso AM
    Environ Technol; 2017 Mar; 38(6):718-729. PubMed ID: 27384382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
    Pan Y; Li W; An H; Cui H; Wang Y
    Chemosphere; 2016 Feb; 144():2312-20. PubMed ID: 26606185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cumulative human health risk analysis of trihalomethanes exposure in drinking water systems.
    Kumari M; Gupta SK
    J Environ Manage; 2022 Nov; 321():115949. PubMed ID: 35985263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system.
    Rodriguez MJ; Sérodes JB; Levallois P
    Water Res; 2004 Dec; 38(20):4367-82. PubMed ID: 15556212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids.
    Peleato NM; Andrews RC
    J Environ Sci (China); 2015 Jan; 27():159-67. PubMed ID: 25597674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-level modelling of chlorination by-product presence in drinking water distribution systems for human exposure assessment purposes.
    Legay C; Rodriguez MJ; Miranda-Moreno L; Sérodes JB; Levallois P
    Environ Monit Assess; 2011 Jul; 178(1-4):507-24. PubMed ID: 20862540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of DBPs in synthetic water by indoor techniques and its implications on exposure and health risk.
    Chowdhury S; Mazumder MAJ; Alhooshani K; Al-Suwaiyan MS
    Sci Total Environ; 2019 Nov; 691():621-630. PubMed ID: 31325862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China.
    Ding H; Meng L; Zhang H; Yu J; An W; Hu J; Yang M
    Environ Sci Process Impacts; 2013 Jul; 15(7):1424-9. PubMed ID: 23743579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: Taking haloacetic acids as a case study.
    Lin H; Dai Q; Zheng L; Hong H; Deng W; Wu F
    Chemosphere; 2020 Jun; 248():125999. PubMed ID: 32006834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing disinfection by-product monitoring points in a distribution system using cluster analysis.
    Delpla I; Florea M; Pelletier G; Rodriguez MJ
    Chemosphere; 2018 Oct; 208():512-521. PubMed ID: 29890489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The occurrence of THMs and AOX in drinking water of Shandong Province, China.
    Yao Z; Sun S; Wang M; Zhao Q; Jia R
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18583-18592. PubMed ID: 31054055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-sex specific and cause-specific health risk and burden of disease induced by exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) from drinking water: An assessment in four urban communities of Bushehr Province, Iran, 2017.
    Dobaradaran S; Shabankareh Fard E; Tekle-Röttering A; Keshtkar M; Karbasdehi VN; Abtahi M; Gholamnia R; Saeedi R
    Environ Res; 2020 Mar; 182():109062. PubMed ID: 31883495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Occurrence of haloacetic acids in drinking water in certain cities of China.
    Zhou H; Zhang XJ; Wang ZS
    Biomed Environ Sci; 2004 Sep; 17(3):299-308. PubMed ID: 15602827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.