These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24289039)

  • 21. The Relationship between Protein-Protein Interactions and Liquid-Liquid Phase Separation for Monoclonal Antibodies.
    Sibanda N; Shanmugam RK; Curtis R
    Mol Pharm; 2023 May; 20(5):2662-2674. PubMed ID: 37039349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale coarse-graining of the protein energy landscape.
    Hills RD; Lu L; Voth GA
    PLoS Comput Biol; 2010 Jun; 6(6):e1000827. PubMed ID: 20585614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quasichemical approach for protein-cluster free energies in dilute solution.
    Young TM; Roberts CJ
    J Chem Phys; 2007 Oct; 127(16):165101. PubMed ID: 17979394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation.
    Das A; Andersen HC
    J Chem Phys; 2009 Jul; 131(3):034102. PubMed ID: 19624176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing Experimental Monoclonal Antibody Interactions and Clustering Using a Coarse-Grained Simulation Library and a Viscosity Model.
    Chowdhury A; Manohar N; Guruprasad G; Chen AT; Lanzaro A; Blanco M; Johnston KP; Truskett TM
    J Phys Chem B; 2023 Feb; 127(5):1120-1137. PubMed ID: 36716270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smart resolution replica exchange: an efficient algorithm for exploring complex energy landscapes.
    Liu P; Voth GA
    J Chem Phys; 2007 Jan; 126(4):045106. PubMed ID: 17286516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics and Free Energy Landscape of BAR-Domain Dimerization from Molecular Simulations.
    Jhaveri A; Maisuria D; Varga M; Mohammadyani D; Johnson ME
    J Phys Chem B; 2021 Apr; 125(15):3739-3751. PubMed ID: 33826319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.
    Riniker S; van Gunsteren WF
    J Chem Phys; 2011 Feb; 134(8):084110. PubMed ID: 21361530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical simulation of dipolar Janus colloids: equilibrium structure and thermodynamics.
    Hagy MC; Hernandez R
    J Chem Phys; 2012 Jul; 137(4):044505. PubMed ID: 22852629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field.
    Stark AC; Andrews CT; Elcock AH
    J Chem Theory Comput; 2013 Sep; 9(9):. PubMed ID: 24223529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembling dipeptides: conformational sampling in solvent-free coarse-grained simulation.
    Villa A; Peter C; van der Vegt NF
    Phys Chem Chem Phys; 2009 Mar; 11(12):2077-86. PubMed ID: 19280018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge-induced patchy attractions between proteins.
    Li W; Persson BA; Morin M; Behrens MA; Lund M; Zackrisson Oskolkova M
    J Phys Chem B; 2015 Jan; 119(2):503-8. PubMed ID: 25494398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: protein resistance and colloidal stability.
    Zhang F; Skoda MW; Jacobs RM; Zorn S; Martin RA; Martin CM; Clark GF; Goerigk G; Schreiber F
    J Phys Chem A; 2007 Dec; 111(49):12229-37. PubMed ID: 17914772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferability of coarse-grained force fields: the polymer case.
    Carbone P; Varzaneh HA; Chen X; Müller-Plathe F
    J Chem Phys; 2008 Feb; 128(6):064904. PubMed ID: 18282071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
    Kim YC; Hummer G
    J Mol Biol; 2008 Feb; 375(5):1416-33. PubMed ID: 18083189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.
    Takada S; Kanada R; Tan C; Terakawa T; Li W; Kenzaki H
    Acc Chem Res; 2015 Dec; 48(12):3026-35. PubMed ID: 26575522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions.
    Blanco MA; Perevozchikova T; Martorana V; Manno M; Roberts CJ
    J Phys Chem B; 2014 Jun; 118(22):5817-31. PubMed ID: 24810917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models.
    Noid WG; Chu JW; Ayton GS; Krishna V; Izvekov S; Voth GA; Das A; Andersen HC
    J Chem Phys; 2008 Jun; 128(24):244114. PubMed ID: 18601324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.