These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24289240)

  • 1. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
    Onstott TC; Magnabosco C; Aubrey AD; Burton AS; Dworkin JP; Elsila JE; Grunsfeld S; Cao BH; Hein JE; Glavin DP; Kieft TL; Silver BJ; Phelps TJ; van Heerden E; Opperman DJ; Bada JL
    Geobiology; 2014 Jan; 12(1):1-19. PubMed ID: 24289240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial turnover times in the deep seabed studied by amino acid racemization modelling.
    Braun S; Mhatre SS; Jaussi M; Røy H; Kjeldsen KU; Pearce C; Seidenkrantz MS; Jørgensen BB; Lomstein BA
    Sci Rep; 2017 Jul; 7(1):5680. PubMed ID: 28720809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The deep subsurface biosphere is alive and well.
    Teske AP
    Trends Microbiol; 2005 Sep; 13(9):402-4. PubMed ID: 16043356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartic acid racemization constrains long-term viability and longevity of endospores.
    Liang R; Lau MCY; Baars O; Robb FT; Onstott TC
    FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31437264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost.
    Brinton KL; Tsapin AI; Gilichinsky D; McDonald GD
    Astrobiology; 2002; 2(1):77-82. PubMed ID: 12449856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms.
    Müller N; Griffin BM; Stingl U; Schink B
    Environ Microbiol; 2008 Jun; 10(6):1501-11. PubMed ID: 18248451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Thermophilic prokaryotes from deep subterranean habitats].
    Slobodkin AI; Slobodkina GB
    Mikrobiologiia; 2014; 83(3):255-70. PubMed ID: 25844436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.
    Lomstein BA; Langerhuus AT; D'Hondt S; Jørgensen BB; Spivack AJ
    Nature; 2012 Mar; 484(7392):101-4. PubMed ID: 22425999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feast and famine--microbial life in the deep-sea bed.
    Jørgensen BB; Boetius A
    Nat Rev Microbiol; 2007 Oct; 5(10):770-81. PubMed ID: 17828281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea.
    Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R
    Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic water masses of the Eastern North Atlantic.
    Varela MM; van Aken HM; Sintes E; Herndl GJ
    Environ Microbiol; 2008 Jan; 10(1):110-24. PubMed ID: 18211271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep biosphere-related bacteria within the subsurface of tidal flat sediments.
    Wilms R; Köpke B; Sass H; Chang TS; Cypionka H; Engelen B
    Environ Microbiol; 2006 Apr; 8(4):709-19. PubMed ID: 16584482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria.
    Schippers A; Neretin LN; Kallmeyer J; Ferdelman TG; Cragg BA; Parkes RJ; Jørgensen BB
    Nature; 2005 Feb; 433(7028):861-4. PubMed ID: 15729341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation.
    Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB
    Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age estimation of bloodstains: a preliminary report based on aspartic acid racemization rate.
    Arany S; Ohtani S
    Forensic Sci Int; 2011 Oct; 212(1-3):e36-9. PubMed ID: 21658870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.
    Soo RM; Wood SA; Grzymski JJ; McDonald IR; Cary SC
    Environ Microbiol; 2009 Mar; 11(3):715-28. PubMed ID: 19278453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA).
    Engel AS; Meisinger DB; Porter ML; Payn RA; Schmid M; Stern LA; Schleifer KH; Lee NM
    ISME J; 2010 Jan; 4(1):98-110. PubMed ID: 19675595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Estimation of age from teeth using the racemization of aspartic acid (racemization method)].
    Ohtani S; Yamada Y; Yamamoto I; Marumo T; Sugeno H; Sugimoto H; Ogasawara A; Yamagishi M
    Nihon Hoigaku Zasshi; 2000 Aug; 54(2):207-18. PubMed ID: 11060990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.
    Sass H; Cypionka H
    Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.