These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24289240)

  • 41. Estimation of chronological age from the racemization rate of L- and D-aspartic acid: how to completely separate enantiomers from dentin.
    Yamamoto T; Ohtani S
    Methods Mol Biol; 2012; 794():265-72. PubMed ID: 21956569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.
    Webster G; Parkes RJ; Cragg BA; Newberry CJ; Weightman AJ; Fry JC
    FEMS Microbiol Ecol; 2006 Oct; 58(1):65-85. PubMed ID: 16958909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments.
    Mhatre SS; Kaufmann S; Marshall IPG; Obrochta S; Andrèn T; Jørgensen BB; Lomstein BA
    FEMS Microbiol Ecol; 2019 Jun; 95(6):. PubMed ID: 31095297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rate of aspartic acid racemization in bone.
    Ohtani S
    Am J Forensic Med Pathol; 1998 Sep; 19(3):284-7. PubMed ID: 9760098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age.
    Maroudas A; Bayliss MT; Uchitel-Kaushansky N; Schneiderman R; Gilav E
    Arch Biochem Biophys; 1998 Feb; 350(1):61-71. PubMed ID: 9466821
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [In vivo amino acid racemization: possible role in the molecular aging of proteins (author's transl)].
    Pautet F
    Pathol Biol (Paris); 1980 May; 28(5):325-7. PubMed ID: 6992069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments.
    Hollister EB; Engledow AS; Hammett AJ; Provin TL; Wilkinson HH; Gentry TJ
    ISME J; 2010 Jun; 4(6):829-38. PubMed ID: 20130657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico.
    Martinez RJ; Mills HJ; Story S; Sobecky PA
    Environ Microbiol; 2006 Oct; 8(10):1783-96. PubMed ID: 16958759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Colonization of overlaying water by bacteria from dry river sediments.
    Fazi S; Amalfitano S; Piccini C; Zoppini A; Puddu A; Pernthaler J
    Environ Microbiol; 2008 Oct; 10(10):2760-72. PubMed ID: 18643927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth).
    Finster KW; Cockell CS; Voytek MA; Gronstal AL; Kjeldsen KU
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):515-26. PubMed ID: 19669589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean.
    Wellsbury P; Mather I; Parkes RJ
    FEMS Microbiol Ecol; 2002 Oct; 42(1):59-70. PubMed ID: 19709266
    [TBL] [Abstract][Full Text] [Related]  

  • 52. D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin.
    Møller MH; Glombitza C; Lever MA; Deng L; Morono Y; Inagaki F; Doll M; Su CC; Lomstein BA
    Front Microbiol; 2018; 9():967. PubMed ID: 29867871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica.
    Sattley WM; Madigan MT
    FEMS Microbiol Lett; 2007 Jul; 272(1):48-54. PubMed ID: 17456187
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Geochemical evolution of amino acids in dentine of Pleistocene bears.
    De Torres T; Ortiz JE; García MJ; Llamas JF; Canoira L; De La Morena MA; Juliá R
    Chirality; 2001 Aug; 13(8):517-21. PubMed ID: 11466777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches.
    Bertics VJ; Ziebis W
    ISME J; 2009 Nov; 3(11):1269-85. PubMed ID: 19458658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of aspartic acid racemization between mammoth and human dentinal tissues.
    Arany S; Ohtani S; Yamamoto T; Sugiyama T
    Arch Oral Biol; 2007 Jan; 52(1):20-5. PubMed ID: 17049483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estimation of age from a tooth by means of racemization of an amino acid, especially aspartic acid--comparison of enamel and dentin.
    Ohtani S; Yamamoto K
    J Forensic Sci; 1992 Jul; 37(4):1061-7. PubMed ID: 1506827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significant contribution of Archaea to extant biomass in marine subsurface sediments.
    Lipp JS; Morono Y; Inagaki F; Hinrichs KU
    Nature; 2008 Aug; 454(7207):991-4. PubMed ID: 18641632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Considerations on the role of aspartic acid racemization in the aging process.
    Helfman PM; Bada JL; Shou MY
    Gerontology; 1977; 23(6):419-25. PubMed ID: 892449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Concordance of collagen-based radiocarbon and aspartic-acid racemization ages.
    Bada JL; Schroeder RA; Protsch R; Berger R
    Proc Natl Acad Sci U S A; 1974 Mar; 71(3):914-7. PubMed ID: 4522802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.