These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24289255)

  • 21. Versatile fabrication and applications of dense, orderly arrays of polymeric nanostructures over large areas.
    Lai CQ; Cheng H
    J Mater Chem B; 2014 Sep; 2(36):5982-5991. PubMed ID: 32261850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Surface-Reinforced Biodegradable Chitosan Nanoparticles and Their Application in Nanostructured Antireflective and Self-Cleaning Surfaces.
    Jung CL; Park SC; Lim H
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40835-40841. PubMed ID: 31577413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic subwavelength antireflective gratings on GaAs.
    Sun CH; Ho BJ; Jiang B; Jiang P
    Opt Lett; 2008 Oct; 33(19):2224-6. PubMed ID: 18830359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching.
    Ye X; Jiang X; Huang J; Geng F; Sun L; Zu X; Wu W; Zheng W
    Sci Rep; 2015 Aug; 5():13023. PubMed ID: 26268896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask.
    Lee Y; Koh K; Na H; Kim K; Kang JJ; Kim J
    Nanoscale Res Lett; 2009 Jan; 4(4):364-370. PubMed ID: 20596495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas.
    Li Y; Wang C; Yao Z; Kim HK; Kim NY
    Nanoscale Res Lett; 2014; 9(1):530. PubMed ID: 25278821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings.
    Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L
    ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antireflective subwavelength structures on microlens arrays-comparison of various manufacturing techniques.
    Pacholski C; Morhard C; Spatz JP; Lehr D; Schulze M; Kley EB; Tünnermann A; Helgert M; Sundermann M; Brunner R
    Appl Opt; 2012 Jan; 51(1):8-14. PubMed ID: 22270407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2016 Nov; 481():82-90. PubMed ID: 27454031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ga(+) beam lithography for nanoscale silicon reactive ion etching.
    Henry MD; Shearn MJ; Chhim B; Scherer A
    Nanotechnology; 2010 Jun; 21(24):245303. PubMed ID: 20484788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cu(In,Ga)Se
    Jeong HJ; Kim YC; Kim ST; Choi MH; Song YH; Yun JH; Park MS; Jang JH
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32967186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth mechanism of one-step self-masking reactive-ion-etching (RIE) broadband antireflective and superhydrophilic structures induced by metal nanodots on fused silica.
    Wu J; Ye X; Sun L; Huang J; Wen J; Geng F; Zeng Y; Li Q; Yi Z; Jiang X; Zhang K
    Opt Express; 2018 Jan; 26(2):1361-1374. PubMed ID: 29402011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion-Enhanced Etching Characteristics of sp
    Li J; Kim Y; Han S; Chae H
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of SiO
    Sung D; Wen L; Tak H; Lee H; Kim D; Yeom G
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings.
    Xie H; Huang HX; Peng YJ
    Nanoscale; 2017 Aug; 9(33):11951-11958. PubMed ID: 28792045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF
    Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells.
    Leem JW; Yu JS
    Opt Express; 2012 May; 20(10):A431-40. PubMed ID: 22712092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.