These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24289337)

  • 1. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys.
    Ham HC; Manogaran D; Lee KH; Kwon K; Jin SA; You DJ; Pak C; Hwang GS
    J Chem Phys; 2013 Nov; 139(20):201104. PubMed ID: 24289337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the surface-subsurface interlayer interaction in enhancing oxygen hydrogenation to water in Pd3Co alloy catalysts.
    Manogaran D; Hwang GS
    Phys Chem Chem Phys; 2013 Aug; 15(29):12118-23. PubMed ID: 23652917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity.
    Singh RK; Rahul R; Neergat M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors controlling the energetics of the oxygen reduction reaction on the Pd-Co electro-catalysts: insight from first principles.
    Zuluaga S; Stolbov S
    J Chem Phys; 2011 Oct; 135(13):134702. PubMed ID: 21992330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.
    Zhou WP; Yang X; Vukmirovic MB; Koel BE; Jiao J; Peng G; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2009 Sep; 131(35):12755-62. PubMed ID: 19722720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of carbon-titania nanocomposite-supported Pd3Co alloy nanoparticles for oxygen reduction.
    Lim Y; Bae SJ; Kim S; Lim Y; Choi J; Nahm KS; Kim P
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5698-701. PubMed ID: 23882820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating Pd by morphology tailoring for oxygen reduction.
    Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD
    J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying.
    Cheng D; Qiu X; Yu H
    Phys Chem Chem Phys; 2014 Oct; 16(38):20377-81. PubMed ID: 25144838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study.
    Gu Z; Balbuena PB
    J Phys Chem A; 2006 Aug; 110(32):9783-7. PubMed ID: 16898677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction.
    Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanoporous PdCo alloy as a highly active electrocatalyst for the oxygen-reduction reaction and formic acid electrooxidation.
    Xu C; Liu Y; Zhang H; Geng H
    Chem Asian J; 2013 Nov; 8(11):2721-8. PubMed ID: 23868702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au).
    Fernández JL; Walsh DA; Bard AJ
    J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of Pt near surface alloys under electrochemical conditions: a model study.
    Zhang X; Yu S; Zheng W; Liu P
    Phys Chem Chem Phys; 2014 Aug; 16(31):16615-22. PubMed ID: 24994557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into O and OH adsorption on the Pt-Co alloy surface: effects of Pt/Co ratios and structures.
    Zhao P; Qin X; Li H; Qu K; Li R
    Phys Chem Chem Phys; 2020 Sep; 22(37):21124-21130. PubMed ID: 32955059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media.
    Rahul R; Singh RK; Bera B; Devivaraprasad R; Neergat M
    Phys Chem Chem Phys; 2015 Jun; 17(23):15146-55. PubMed ID: 25991432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and local reactivity of PdAg/Pd(111) surface alloys.
    Mancera LA; Behm RJ; Gross A
    Phys Chem Chem Phys; 2013 Feb; 15(5):1497-508. PubMed ID: 23235737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.