BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24289359)

  • 1. Mass and charge transport in 1-alkyl-3-methylimidazolium triflate ionic liquids.
    Petrowsky M; Burba CM; Frech R
    J Chem Phys; 2013 Nov; 139(20):204502. PubMed ID: 24289359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.
    Petrowsky M; Fleshman AM; Frech R
    J Phys Chem B; 2013 Mar; 117(10):2971-8. PubMed ID: 23414431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular model of self diffusion in polar organic liquids: implications for conductivity and fluidity in polar organic liquids and electrolytes.
    Frech R; Petrowsky M
    J Phys Chem B; 2014 Mar; 118(9):2422-32. PubMed ID: 24559237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.
    Petrowsky M; Fleshman A; Ismail M; Glatzhofer DT; Bopege DN; Frech R
    J Phys Chem B; 2012 Aug; 116(33):10098-105. PubMed ID: 22838847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the electrical conductivity of imidazolium ionic liquids.
    Leys J; Wübbenhorst M; Preethy Menon C; Rajesh R; Thoen J; Glorieux C; Nockemann P; Thijs B; Binnemans K; Longuemart S
    J Chem Phys; 2008 Feb; 128(6):064509. PubMed ID: 18282058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.
    Fleshman AM; Forsythe GE; Petrowsky M; Frech R
    J Phys Chem B; 2016 Sep; 120(37):9959-68. PubMed ID: 27580069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free volume model for the unexpected effect of C2-methylation on the properties of imidazolium ionic liquids.
    Chen ZJ; Lee JM
    J Phys Chem B; 2014 Mar; 118(10):2712-8. PubMed ID: 24576309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids with glucose in water: a study of volumetric properties, viscosity, conductivity and NMR.
    Zhuo K; Chen Y; Chen J; Bai G; Wang J
    Phys Chem Chem Phys; 2011 Aug; 13(32):14542-9. PubMed ID: 21750787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes.
    Löwe R; Hanemann T; Hofmann A
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30658399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems.
    Shahriari S; Neves CM; Freire MG; Coutinho JA
    J Phys Chem B; 2012 Jun; 116(24):7252-8. PubMed ID: 22594382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing reduced partial charge models with polarizable simulations of ionic liquids.
    Schröder C
    Phys Chem Chem Phys; 2012 Mar; 14(9):3089-102. PubMed ID: 22287020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [C(n)H(2)(n)(+1)mim][C(k)H(2)(k)(+1)SO(3)]: synthesis and physicochemical properties.
    Blesic M; Swadźba-Kwaśny M; Belhocine T; Gunaratne HQ; Lopes JN; Gomes MF; Pádua AA; Seddon KR; Rebelo LP
    Phys Chem Chem Phys; 2009 Oct; 11(39):8939-48. PubMed ID: 20449040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)(n)F, n = 1.0-2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes.
    Xu F; Matsumoto K; Hagiwara R
    J Phys Chem B; 2012 Aug; 116(33):10106-12. PubMed ID: 22845709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Ionic Liquids in Electrochemistry-Recent Advances.
    Tiago GAO; Matias IAS; Ribeiro APC; Martins LMDRS
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33317199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal, rheological, and ion-transport properties of phosphonium-based ionic liquids.
    Green MD; Schreiner C; Long TE
    J Phys Chem A; 2011 Dec; 115(47):13829-35. PubMed ID: 22026727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids.
    Sangoro JR; Iacob C; Agapov AL; Wang Y; Berdzinski S; Rexhausen H; Strehmel V; Friedrich C; Sokolov AP; Kremer F
    Soft Matter; 2014 May; 10(20):3536-40. PubMed ID: 24718358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ionic Composition on Physicochemical Properties of Mono-Ether Functional Ionic Liquids.
    Zhou H; Chen L; Wei Z; Lu Y; Peng C; Zhang B; Zhao X; Wu L; Wang Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31461950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Methylating Imidazolium-Based Ionic Liquids on Viscosity: New Insights from the Compensated Arrhenius Formalism.
    Fleshman AM; Goldman AM; Hetcher WJ; Debbert SL; Do-Thanh CL; Mahurin SM; Dai S
    J Phys Chem B; 2023 Jul; 127(27):6136-6143. PubMed ID: 37379133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity of cellulose-imidazolium-based ionic liquid solutions.
    Sescousse R; Le KA; Ries ME; Budtova T
    J Phys Chem B; 2010 Jun; 114(21):7222-8. PubMed ID: 20462222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids.
    Pitawala J; Kim JK; Jacobsson P; Koch V; Croce F; Matic A
    Faraday Discuss; 2012; 154():71-80; discussion 81-96, 465-71. PubMed ID: 22455015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.