These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24289391)

  • 1. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays.
    Cipiccia S; Wiggins SM; Maneuski D; Brunetti E; Vieux G; Yang X; Issac RC; Welsh GH; Anania M; Islam MR; Ersfeld B; Montgomery R; Smith G; Hoek M; Hamilton DJ; Lemos NR; Symes DR; Rajeev PP; Shea VO; Dias JM; Jaroszynski DA
    Rev Sci Instrum; 2013 Nov; 84(11):113302. PubMed ID: 24289391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray analysis methods for sources from self-modulated laser wakefield acceleration driven by picosecond lasers.
    King PM; Lemos N; Shaw JL; Milder AL; Marsh KA; Pak A; Hegelich BM; Michel P; Moody J; Joshi C; Albert F
    Rev Sci Instrum; 2019 Mar; 90(3):033503. PubMed ID: 30927775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering.
    Yu C; Qi R; Wang W; Liu J; Li W; Wang C; Zhang Z; Liu J; Qin Z; Fang M; Feng K; Wu Y; Tian Y; Xu Y; Wu F; Leng Y; Weng X; Wang J; Wei F; Yi Y; Song Z; Li R; Xu Z
    Sci Rep; 2016 Jul; 6():29518. PubMed ID: 27405540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact spectroscopy of keV to MeV X-rays from a laser wakefield accelerator.
    Hannasch A; Laso Garcia A; LaBerge M; Zgadzaj R; Köhler A; Couperus Cabadağ JP; Zarini O; Kurz T; Ferrari A; Molodtsova M; Naumann L; Cowan TE; Schramm U; Irman A; Downer MC
    Sci Rep; 2021 Jul; 11(1):14368. PubMed ID: 34257331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Shot Multi-keV X-Ray Absorption Spectroscopy Using an Ultrashort Laser-Wakefield Accelerator Source.
    Kettle B; Gerstmayr E; Streeter MJV; Albert F; Baggott RA; Bourgeois N; Cole JM; Dann S; Falk K; Gallardo González I; Hussein AE; Lemos N; Lopes NC; Lundh O; Ma Y; Rose SJ; Spindloe C; Symes DR; Šmíd M; Thomas AGR; Watt R; Mangles SPD
    Phys Rev Lett; 2019 Dec; 123(25):254801. PubMed ID: 31922780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch.
    Kojima S; Arikawa Y; Nishimura Y; Togawa H; Zhang Z; Ikenouchi T; Ozaki T; Morace A; Nagai T; Abe Y; Sakata S; Inoue H; Utsugi M; Nakai M; Nishimura H; Shiraga H; Kato R; Fujioka S; Azechi H
    Rev Sci Instrum; 2014 Nov; 85(11):11D634. PubMed ID: 25430210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics.
    Luo W; Xu W; Pan QY; Cai XZ; Chen JG; Chen YZ; Fan GT; Fan GW; Guo W; Li YJ; Liu WH; Lin GQ; Ma YG; Shen WQ; Shi XC; Xu BJ; Xu JQ; Xu Y; Zhang HO; Yan Z; Yang LF; Zhao MH
    Rev Sci Instrum; 2010 Jan; 81(1):013304. PubMed ID: 20113090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact high energy x-ray spectrometer based on forward Compton scattering for high intensity laser plasma experiments.
    Singh S; Versaci R; Laso Garcia A; Morejon L; Ferrari A; Molodtsova M; Schwengner R; Kumar D; Cowan T
    Rev Sci Instrum; 2018 Aug; 89(8):085118. PubMed ID: 30184659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons.
    Chen S; Powers ND; Ghebregziabher I; Maharjan CM; Liu C; Golovin G; Banerjee S; Zhang J; Cunningham N; Moorti A; Clarke S; Pozzi S; Umstadter DP
    Phys Rev Lett; 2013 Apr; 110(15):155003. PubMed ID: 25167278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation.
    Jeon JH; Nakajima K; Kim HT; Rhee YJ; Pathak VB; Cho MH; Shin JH; Yoo BJ; Hojbota C; Jo SH; Shin KW; Sung JH; Lee SK; Cho BI; Choi IW; Nam CH
    Rev Sci Instrum; 2015 Dec; 86(12):123116. PubMed ID: 26724015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single shot phase contrast imaging using laser-produced Betatron x-ray beams.
    Fourmaux S; Corde S; Phuoc KT; Lassonde P; Lebrun G; Payeur S; Martin F; Sebban S; Malka V; Rousse A; Kieffer JC
    Opt Lett; 2011 Jul; 36(13):2426-8. PubMed ID: 21725433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular dependence of betatron x-ray spectra from a laser-wakefield accelerator.
    Albert F; Pollock BB; Shaw JL; Marsh KA; Ralph JE; Chen YH; Alessi D; Pak A; Clayton CE; Glenzer SH; Joshi C
    Phys Rev Lett; 2013 Dec; 111(23):235004. PubMed ID: 24476282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy.
    Kojima S; Ikenouchi T; Arikawa Y; Sakata S; Zhang Z; Abe Y; Nakai M; Nishimura H; Shiraga H; Ozaki T; Miyamoto S; Yamaguchi M; Takemoto A; Fujioka S; Azechi H
    Rev Sci Instrum; 2016 Apr; 87(4):043502. PubMed ID: 27131669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electrons.
    Thorn DB; Geddes CG; Matlis NH; Plateau GR; Esarey EH; Battaglia M; Schroeder CB; Shiraishi S; Stöhlker T; Tóth C; Leemans WP
    Rev Sci Instrum; 2010 Oct; 81(10):10E325. PubMed ID: 21034023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.
    Shintake T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041906. PubMed ID: 18999454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator.
    Tsechanski A; Krutman Y; Faermann S
    Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inverse free electron laser acceleration-driven Compton scattering X-ray source.
    Gadjev I; Sudar N; Babzien M; Duris J; Hoang P; Fedurin M; Kusche K; Malone R; Musumeci P; Palmer M; Pogorelsky I; Polyanskiy M; Sakai Y; Swinson C; Williams O; Rosenzweig JB
    Sci Rep; 2019 Jan; 9(1):532. PubMed ID: 30679471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brilliant circularly polarized γ-ray sources via single-shot laser plasma interaction.
    Wang Y; Ababekri M; Wan F; Zhao Q; Lv C; Ren XG; Xu ZF; Zhao YT; Li JX
    Opt Lett; 2022 Jul; 47(13):3355-3358. PubMed ID: 35776623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV.
    Vieira AA; Linke A; Yoshimura EM; Terini RA; Herdade SB
    Appl Radiat Isot; 2011 Feb; 69(2):350-7. PubMed ID: 21074445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-MeV tunably polarized X-ray production with laser Thomson backscattering.
    Kawase K; Kando M; Hayakawa T; Daito I; Kondo S; Homma T; Kameshima T; Kotaki H; Chen LM; Fukuda Y; Faenov A; Shizuma T; Fujiwara M; Bulanov SV; Kimura T; Tajima T
    Rev Sci Instrum; 2008 May; 79(5):053302. PubMed ID: 18513062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.