These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24289433)

  • 21. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.
    Liang C; Wang F; Tian Y; Zhao X; Zhang H; Cui L; Zhang D; Ferreira P
    Rev Sci Instrum; 2015 Apr; 86(4):045106. PubMed ID: 25933896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of flexure based 6-degrees of freedom parallel nano-positioning system with large displacement.
    Kang D; Gweon D
    Rev Sci Instrum; 2012 Mar; 83(3):035003. PubMed ID: 22462952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Note: Design of a novel ultraprecision in-plane XYθ positioning stage.
    Hwang D; Lee MG; Jeong J
    Rev Sci Instrum; 2011 Feb; 82(2):026102. PubMed ID: 21361641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation.
    Sun X; Chen W; Tian Y; Fatikow S; Zhou R; Zhang J; Mikczinski M
    Rev Sci Instrum; 2013 Aug; 84(8):085002. PubMed ID: 24007097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and experiment of multidimensional and subnanometer stage driven by spatially distributed piezoelectric ceramics.
    Zhang F; Huang Q; Zhang C; Cheng B; Cheng R; Zhang L; Li H
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of piezoelectric actuator in series nano-positioning stage.
    Lu Q; Chen X
    Sci Prog; 2020; 103(1):36850419892190. PubMed ID: 31789110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A parallelogram-based compliant remote-center-of-motion stage for active parallel alignment.
    Qu J; Chen W; Zhang J
    Rev Sci Instrum; 2014 Sep; 85(9):095112. PubMed ID: 25273777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a tilt-positioning mechanism driven by flextensional piezoelectric actuators.
    Jing Z; Xu M; Wu T; Tian Z
    Rev Sci Instrum; 2016 Aug; 87(8):085006. PubMed ID: 27587152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel piezoelectrically actuated 2-DoF compliant micro/nano-positioning stage with multi-level amplification.
    Zhu WL; Zhu Z; Shi Y; Chen X; He Y; Ehmann KF; Ju BF
    Rev Sci Instrum; 2016 Oct; 87(10):105006. PubMed ID: 27802713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A differentially amplified Hall effect displacement sensor for positioning control of a long-range flexure stage.
    Park W; Chun H; Nguyen P; Lee C
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37449896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compliance and control characteristics of an additive manufactured-flexure stage.
    Lee C; Tarbutton JA
    Rev Sci Instrum; 2015 Apr; 86(4):045107. PubMed ID: 25933897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.
    Xu Q
    Rev Sci Instrum; 2013 May; 84(5):055001. PubMed ID: 23742581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott-Russell mechanisms.
    Ding Y; Lai LJ
    Rev Sci Instrum; 2019 Jun; 90(6):065102. PubMed ID: 31255005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Novel Monopolar Cross-Scale Nanopositioning Stage Based on Dual Piezoelectric Stick-Slip Driving Principle.
    Zhu J; Meng S; Wang Y; Pang M; Hu Z; Ru C
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.
    Chen T; Wang Y; Liu H; Yang Z; Wang P; Sun L
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28134854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Generic Compliance Modeling Method for Two-Axis Elliptical-Arc-Filleted Flexure Hinges.
    Li L; Zhang D; Guo S; Qu H
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements.
    Hsieh HL; Pan SW
    Opt Express; 2015 Feb; 23(3):2451-65. PubMed ID: 25836113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of the nonlinear dynamic response of a Z-tilts lead zirconate titanate-based compensation stage using the capacitor insertion method.
    Liu CH; Chen CL; Lee HW; Jywe WY
    Rev Sci Instrum; 2009 Nov; 80(11):115112. PubMed ID: 19947762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling and Analysis of Characteristics of a Piezoelectric-Actuated Micro-/Nano Compliant Platform Using Bond Graph Approach.
    Lin C; Shen Z; Yu J; Li P; Huo D
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism.
    Shang J; Tian Y; Li Z; Wang F; Cai K
    Rev Sci Instrum; 2015 Sep; 86(9):095001. PubMed ID: 26429469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.