These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24289440)

  • 1. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films.
    Yan YG; Martin J; Wong-Ng W; Green M; Tang XF
    Rev Sci Instrum; 2013 Nov; 84(11):115110. PubMed ID: 24289440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening for combinatorial thin-film library of thermoelectric materials.
    Watanabe M; Kita T; Fukumura T; Ohtomo A; Ueno K; Kawasaki M
    J Comb Chem; 2008; 10(2):175-8. PubMed ID: 18278874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature.
    García-Cañadas J; Min G
    Rev Sci Instrum; 2014 Apr; 85(4):043906. PubMed ID: 24784625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries.
    Ziolkowski P; Wambach M; Ludwig A; Mueller E
    ACS Comb Sci; 2018 Jan; 20(1):1-18. PubMed ID: 29266920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty analysis for common Seebeck and electrical resistivity measurement systems.
    Mackey J; Dynys F; Sehirlioglu A
    Rev Sci Instrum; 2014 Aug; 85(8):085119. PubMed ID: 25173324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the high-temperature Seebeck coefficient of thin films by means of an epitaxially regrown thermometric reference material.
    Ramu AT; Mages P; Zhang C; Imamura JT; Bowers JE
    Rev Sci Instrum; 2012 Sep; 83(9):093905. PubMed ID: 23020392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An apparatus for concurrent measurement of thermoelectric material parameters.
    Kallaher RL; Latham CA; Sharifi F
    Rev Sci Instrum; 2013 Jan; 84(1):013907. PubMed ID: 23387668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K.
    Martin J; Nolas GS
    Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ measurement of electrical resistivity and Seebeck coefficient simultaneously at high temperature and high pressure.
    Yuan B; Tao Q; Zhao X; Cao K; Cui T; Wang X; Zhu P
    Rev Sci Instrum; 2014 Jan; 85(1):013904. PubMed ID: 24517779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostat for high temperature and transient characterization of thin film thermoelectric materials.
    Singh R; Shakouri A
    Rev Sci Instrum; 2009 Feb; 80(2):025101. PubMed ID: 19256672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement setup for the simultaneous determination of diffusivity and Seebeck coefficient in a multi-anvil apparatus.
    Jacobsen MK; Liu W; Li B
    Rev Sci Instrum; 2012 Sep; 83(9):093903. PubMed ID: 23020390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature.
    Rouleau O; Alleno E
    Rev Sci Instrum; 2013 Oct; 84(10):105103. PubMed ID: 24182159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials.
    Martin J
    Rev Sci Instrum; 2012 Jun; 83(6):065101. PubMed ID: 22755656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO(2).
    Tang J; Wang W; Zhao GL; Li Q
    J Phys Condens Matter; 2009 May; 21(20):205703. PubMed ID: 21825536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.
    Abadlia L; Gasser F; Khalouk K; Mayoufi M; Gasser JG
    Rev Sci Instrum; 2014 Sep; 85(9):095121. PubMed ID: 25273786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-based setup for simultaneous measurement of the Seebeck coefficient and electrical conductivity for bulk and thin film thermoelectrics.
    Melhem A; Rogé V; Huynh TTD; Stolz A; Talbi A; Tchiffo-Tameko C; Lecas T; Boulmer-Leborgne C; Millon E; Semmar N
    Rev Sci Instrum; 2018 Nov; 89(11):113901. PubMed ID: 30501322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High temperature Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry.
    Böttger PH; Flage-Larsen E; Karlsen OB; Finstad TG
    Rev Sci Instrum; 2012 Feb; 83(2):025101. PubMed ID: 22380119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.