These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24289696)

  • 1. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces.
    Tang X; Xu S; Zhang J; Wang X
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2809-18. PubMed ID: 24476126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing.
    Tang X; Xu S; Wang X
    Nanoscale; 2014 Aug; 6(15):8822-30. PubMed ID: 24956035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon.
    van Zwol PJ; Thiele S; Berger C; de Heer WA; Chevrier J
    Phys Rev Lett; 2012 Dec; 109(26):264301. PubMed ID: 23368565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy.
    Hwang G; Kwon O
    Nanoscale; 2016 Mar; 8(9):5280-90. PubMed ID: 26880606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering.
    Hong Y; Li L; Zeng XC; Zhang J
    Nanoscale; 2015 Apr; 7(14):6286-94. PubMed ID: 25784494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal properties of amorphous/crystalline silicon superlattices.
    France-Lanord A; Merabia S; Albaret T; Lacroix D; Termentzidis K
    J Phys Condens Matter; 2014 Sep; 26(35):355801. PubMed ID: 25105883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-interface scattering in multilayer graphene on an amorphous support.
    Sadeghi MM; Jo I; Shi L
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16321-6. PubMed ID: 24067656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers.
    Sudhindra S; Rashvand F; Wright D; Barani Z; Drozdov AD; Baraghani S; Backes C; Kargar F; Balandin AA
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53073-53082. PubMed ID: 34705408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods.
    Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT
    ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-dependent thermal conductivity in suspended single-layer graphene.
    Xu X; Pereira LF; Wang Y; Wu J; Zhang K; Zhao X; Bae S; Tinh Bui C; Xie R; Thong JT; Hong BH; Loh KP; Donadio D; Li B; Özyilmaz B
    Nat Commun; 2014 Apr; 5():3689. PubMed ID: 24736666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.
    Choi D; Poudel N; Park S; Akinwande D; Cronin SB; Watanabe K; Taniguchi T; Yao Z; Shi L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11101-11107. PubMed ID: 29528211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Thermal Transport Properties of Graphene/SiC Heterostructures on Nuclear Reactor Cladding Material: A Molecular Dynamics Insight.
    Wu L; Sun X; Gong F; Luo J; Yin C; Sun Z; Xiao R
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.