These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24290228)

  • 21. Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting.
    Wang D; Chang G; Zhang Y; Chao J; Yang J; Su S; Wang L; Fan C; Wang L
    Nanoscale; 2016 Jul; 8(25):12697-701. PubMed ID: 27283270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foreign In
    Bu X; Wang G; Tian Y
    Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ XAS study of CoB
    Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM
    Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Template-free synthesis of hematite photoanodes with nanostructured ATO conductive underlayer for PEC water splitting.
    Wang D; Zhang Y; Wang J; Peng C; Huang Q; Su S; Wang L; Huang W; Fan C
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):36-40. PubMed ID: 24328303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents.
    Wang TH; Cheng YJ; Wu YY; Lin CA; Chiang CC; Hsieh YK; Wang CF; Huang CP
    Phys Chem Chem Phys; 2016 Oct; 18(42):29300-29307. PubMed ID: 27731868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications.
    Wang Y; Chen X; Xiu H; Zhuang H; Li J; Zhou Y; Liu D; Kuang Y
    Small; 2021 Dec; 17(52):e2104307. PubMed ID: 34725925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Hematite Photoanode Consisting of (110)-Oriented Single Crystals.
    Zhang H; He Y; Bao X; Wang Z; Jiang W; Zheng L; Fan Y; Zheng Z; Cheng H; Wang P; Liu Y; Wang Z; Huang B
    ChemSusChem; 2023 Oct; 16(19):e202300666. PubMed ID: 37505451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting.
    Tamirat AG; Dubale AA; Su WN; Chen HM; Hwang BJ
    Phys Chem Chem Phys; 2017 Aug; 19(31):20881-20890. PubMed ID: 28745359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability.
    Wang R; Li X; Wang L; Zhao X; Yang G; Li A; Wu C; Shen Q; Zhou Y; Zou Z
    Nanoscale; 2018 Nov; 10(41):19621-19627. PubMed ID: 30325386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.