These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24290304)

  • 21. Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application.
    Wei CJ; Xie YF; Wang XM; Li XY
    Chemosphere; 2018 Sep; 207():715-724. PubMed ID: 29859484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. nZVI injection into variably saturated soils: Field and modeling study.
    Chowdhury AI; Krol MM; Kocur CM; Boparai HK; Weber KP; Sleep BE; O'Carroll DM
    J Contam Hydrol; 2015 Dec; 183():16-28. PubMed ID: 26496622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.
    Crane RA; Dickinson M; Popescu IC; Scott TB
    Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review.
    Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J
    Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability.
    Jia H; Wang C
    Environ Technol; 2013; 34(1-4):25-33. PubMed ID: 23530312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron nanoparticles for environmental clean-up: recent developments and future outlook.
    Yan W; Lien HL; Koel BE; Zhang WX
    Environ Sci Process Impacts; 2013 Jan; 15(1):63-77. PubMed ID: 24592428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green zero valent iron nanoparticles dispersion through a sandy column using different injection sequences.
    Soares A; Ramos S; Albergaria T; Delerue-Matos C
    Sci Total Environ; 2018 Oct; 637-638():935-942. PubMed ID: 29763875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.
    Dong H; Ahmad K; Zeng G; Li Z; Chen G; He Q; Xie Y; Wu Y; Zhao F; Zeng Y
    Environ Pollut; 2016 Apr; 211():363-9. PubMed ID: 26796746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media.
    Tsakiroglou C; Terzi K; Sikinioti-Lock A; Hajdu K; Aggelopoulos C
    Sci Total Environ; 2016 Sep; 563-564():866-78. PubMed ID: 26875604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.
    Hwang Y; Kim D; Shin HS
    Environ Technol; 2015; 36(9-12):1178-87. PubMed ID: 25358487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron.
    Jiang C; Xu X; Megharaj M; Naidu R; Chen Z
    Sci Total Environ; 2015 Oct; 530-531():241-246. PubMed ID: 26047857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.
    Peng L; Liu Y; Gao SH; Chen X; Xin P; Dai X; Ni BJ
    Sci Rep; 2015 Jul; 5():12331. PubMed ID: 26199053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical roles of sulfidation solvent in controlling surface properties and the dechlorination reactivity of S-nZVI.
    Li X; Zeng L; Wen N; Deng D
    J Hazard Mater; 2021 Sep; 417():126014. PubMed ID: 34229377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media.
    Yang Z; Qiu X; Fang Z; Pokeung T
    Water Sci Technol; 2015; 71(12):1800-5. PubMed ID: 26067499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.