These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24290363)

  • 1. Behavioral responses of batoid elasmobranchs to prey-simulating electric fields are correlated to peripheral sensory morphology and ecology.
    Bedore CN; Harris LL; Kajiura SM
    Zoology (Jena); 2014 Apr; 117(2):95-103. PubMed ID: 24290363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroreception in elasmobranchs: sawfish as a case study.
    Wueringer BE
    Brain Behav Evol; 2012; 80(2):97-107. PubMed ID: 22986826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs.
    Kempster RM; McCarthy ID; Collin SP
    J Fish Biol; 2012 Apr; 80(5):2055-88. PubMed ID: 22497416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3044-50. PubMed ID: 19749096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative morphology of stingray lateral line canal and electrosensory systems.
    Jordan LK
    J Morphol; 2008 Nov; 269(11):1325-39. PubMed ID: 18655157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the electrosensory morphology of a euryhaline and a marine stingray.
    Camilieri-Asch V; Kempster RM; Collin SP; Johnstone RW; Theiss SM
    Zoology (Jena); 2013 Oct; 116(5):270-6. PubMed ID: 23988133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory systems in sawfishes. 1. The ampullae of Lorenzini.
    Wueringer BE; Peverell SC; Seymour J; Squire L; Kajiura SM; Collin SP
    Brain Behav Evol; 2011; 78(2):139-49. PubMed ID: 21829004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroethology and life history adaptations of the elasmobranch electric sense.
    Sisneros JA; Tricas TC
    J Physiol Paris; 2002; 96(5-6):379-89. PubMed ID: 14692486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3037-43. PubMed ID: 19749095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators.
    Bedore CN; Kajiura SM
    Physiol Biochem Zool; 2013; 86(3):298-311. PubMed ID: 23629880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prey detection mechanism of elasmobranchs.
    Kim D
    Biosystems; 2007 Feb; 87(2-3):322-31. PubMed ID: 17045390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrosensitive spatial vectors in elasmobranch fishes: implications for source localization.
    Rivera-Vicente AC; Sewell J; Tricas TC
    PLoS One; 2011 Jan; 6(1):e16008. PubMed ID: 21249147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrosensory Impairment in the Atlantic Stingray, Hypanus sabinus, After Crude Oil Exposure.
    Cave EJ; Kajiura SM
    Zoology (Jena); 2020 Dec; 143():125844. PubMed ID: 33130491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling an electrosensory landscape: behavioral and morphological optimization in elasmobranch prey capture.
    Brown BR
    J Exp Biol; 2002 Apr; 205(Pt 7):999-1007. PubMed ID: 11916995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species, sex, size and male maturity composition of previously unreported elasmobranch landings in Kuwait, Qatar and Abu Dhabi Emirate.
    Moore AB; McCarthy ID; Carvalho GR; Peirce R
    J Fish Biol; 2012 Apr; 80(5):1619-42. PubMed ID: 22497401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of electrosense in the feeding behavior of sturgeons.
    Zhang X; Song J; Fan C; Guo H; Wang X; Bleckmann H
    Integr Zool; 2012 Mar; 7(1):74-82. PubMed ID: 22405450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuroecology of cartilaginous fishes: sensory strategies for survival.
    Collin SP
    Brain Behav Evol; 2012; 80(2):80-96. PubMed ID: 22986825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiological analysis of color vision in batoid elasmobranchs.
    Bedore CN; Loew ER; Frank TM; Hueter RE; McComb DM; Kajiura SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Dec; 199(12):1129-41. PubMed ID: 24078200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual fields of four batoid fishes: a comparative study.
    McComb DM; Kajiura SM
    J Exp Biol; 2008 Feb; 211(Pt 4):482-90. PubMed ID: 18245624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory systems in sawfishes. 2. The lateral line.
    Wueringer BE; Peverell SC; Seymour J; Squire L; Collin SP
    Brain Behav Evol; 2011; 78(2):150-61. PubMed ID: 21829005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.