BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24290536)

  • 1. On the ASR and ASR thermal residues characterization of full scale treatment plant.
    Mancini G; Viotti P; Luciano A; Fino D
    Waste Manag; 2014 Feb; 34(2):448-57. PubMed ID: 24290536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue.
    Lee HY
    J Hazard Mater; 2007 Aug; 147(1-2):570-5. PubMed ID: 17316985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full scale treatment of ASR wastes in a modified rotary kiln.
    Mancini G; Viotti P; Luciano A; Raboni M; Fino D
    Waste Manag; 2014 Nov; 34(11):2347-54. PubMed ID: 25103234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.
    Lee CH; Truc NTT; Lee BK; Mitoma Y; Mallampati SR
    J Hazard Mater; 2015 Oct; 296():239-247. PubMed ID: 25935297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of resource recovery from waste incineration residues--the case of zinc.
    Fellner J; Lederer J; Purgar A; Winterstetter A; Rechberger H; Winter F; Laner D
    Waste Manag; 2015 Mar; 37():95-103. PubMed ID: 25458759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.
    Di Gianfilippo M; Costa G; Pantini S; Allegrini E; Lombardi F; Astrup TF
    Waste Manag; 2016 Jan; 47(Pt B):285-98. PubMed ID: 26095983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals' valorisation.
    Vermeulen I; Van Caneghem J; Block C; Baeyens J; Vandecasteele C
    J Hazard Mater; 2011 Jun; 190(1-3):8-27. PubMed ID: 21440364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.
    del Valle-Zermeño R; Formosa J; Chimenos JM; Martínez M; Fernández AI
    Waste Manag; 2013 Mar; 33(3):621-7. PubMed ID: 23102641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.
    Redin LA; Hjelt M; Marklund S
    Waste Manag Res; 2001 Dec; 19(6):518-25. PubMed ID: 12201681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China.
    Pan Y; Wu Z; Zhou J; Zhao J; Ruan X; Liu J; Qian G
    J Hazard Mater; 2013 Oct; 261():269-76. PubMed ID: 23939207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of Italian experience on automotive shredder residue characterization and management.
    Cossu R; Fiore S; Lai T; Luciano A; Mancini G; Ruffino B; Viotti P; Zanetti MC
    Waste Manag; 2014 Oct; 34(10):1752-62. PubMed ID: 24373677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.
    Ko MS; Chen YL; Wei PS
    Waste Manag; 2013 Mar; 33(3):615-20. PubMed ID: 23182658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Belgian MSWI fly ashes and APC residues: a characterisation study.
    De Boom A; Degrez M
    Waste Manag; 2012 Jun; 32(6):1163-70. PubMed ID: 22244614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash.
    Wei CM; Liu QC; Wen J
    Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.