These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 24290990)
1. Should evolutionary geneticists worry about higher-order epistasis? Weinreich DM; Lan Y; Wylie CS; Heckendorn RB Curr Opin Genet Dev; 2013 Dec; 23(6):700-7. PubMed ID: 24290990 [TBL] [Abstract][Full Text] [Related]
2. Analysis of epistatic interactions and fitness landscapes using a new geometric approach. Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106 [TBL] [Abstract][Full Text] [Related]
3. The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography. Weinreich DM; Lan Y; Jaffe J; Heckendorn RB J Stat Phys; 2018; 172(1):208-225. PubMed ID: 29904213 [TBL] [Abstract][Full Text] [Related]
4. Negative epistasis between beneficial mutations in an evolving bacterial population. Khan AI; Dinh DM; Schneider D; Lenski RE; Cooper TF Science; 2011 Jun; 332(6034):1193-6. PubMed ID: 21636772 [TBL] [Abstract][Full Text] [Related]
5. Selection biases the prevalence and type of epistasis along adaptive trajectories. Draghi JA; Plotkin JB Evolution; 2013 Nov; 67(11):3120-31. PubMed ID: 24151997 [TBL] [Abstract][Full Text] [Related]
6. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Weinreich DM; Watson RA; Chao L Evolution; 2005 Jun; 59(6):1165-74. PubMed ID: 16050094 [TBL] [Abstract][Full Text] [Related]
7. Epistatic interactions determine the mutational pathways and coexistence of lineages in clonal Escherichia coli populations. Maharjan RP; Ferenci T Evolution; 2013 Sep; 67(9):2762-8. PubMed ID: 24033182 [TBL] [Abstract][Full Text] [Related]
8. On the deformability of an empirical fitness landscape by microbial evolution. Bajić D; Vila JCC; Blount ZD; Sánchez A Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11286-11291. PubMed ID: 30322921 [TBL] [Abstract][Full Text] [Related]
9. Global epistasis on fitness landscapes. Diaz-Colunga J; Skwara A; Gowda K; Diaz-Uriarte R; Tikhonov M; Bajic D; Sanchez A Philos Trans R Soc Lond B Biol Sci; 2023 May; 378(1877):20220053. PubMed ID: 37004717 [TBL] [Abstract][Full Text] [Related]
10. Detecting epistasis from an ensemble of adapting populations. McCandlish DM; Otwinowski J; Plotkin JB Evolution; 2015 Sep; 69(9):2359-70. PubMed ID: 26194030 [TBL] [Abstract][Full Text] [Related]
12. Rapid adaptation of recombining populations on tunable fitness landscapes. Li J; Amado A; Bank C Mol Ecol; 2024 May; 33(10):e16900. PubMed ID: 36855836 [TBL] [Abstract][Full Text] [Related]
13. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. Flynn KM; Cooper TF; Moore FB; Cooper VS PLoS Genet; 2013 Apr; 9(4):e1003426. PubMed ID: 23593024 [TBL] [Abstract][Full Text] [Related]
14. Simulating Evolution in Asexual Populations with Epistasis. Diaz-Uriarte R Methods Mol Biol; 2021; 2212():121-154. PubMed ID: 33733354 [TBL] [Abstract][Full Text] [Related]
15. Distributions of epistasis in microbes fit predictions from a fitness landscape model. Martin G; Elena SF; Lenormand T Nat Genet; 2007 Apr; 39(4):555-60. PubMed ID: 17369829 [TBL] [Abstract][Full Text] [Related]
16. Pervasive Pairwise Intragenic Epistasis among Sequential Mutations in TEM-1 β-Lactamase. Gonzalez CE; Ostermeier M J Mol Biol; 2019 May; 431(10):1981-1992. PubMed ID: 30922874 [TBL] [Abstract][Full Text] [Related]
17. The distribution of epistasis on simple fitness landscapes. Fraïsse C; Welch JJ Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191 [TBL] [Abstract][Full Text] [Related]