BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24291025)

  • 1. Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set.
    Srivastava P; Mangal M; Agarwal SM
    Gene; 2014 Feb; 535(2):233-8. PubMed ID: 24291025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of COX-2 gene expression through peroxisome proliferator-activated receptor gamma in human cervical cancer cells.
    Han S; Inoue H; Flowers LC; Sidell N
    Clin Cancer Res; 2003 Oct; 9(12):4627-35. PubMed ID: 14555539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and initial characterization of the BRCA2 promoter.
    Davis PL; Miron A; Andersen LM; Iglehart JD; Marks JR
    Oncogene; 1999 Oct; 18(44):6000-12. PubMed ID: 10557089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational discovery of transcriptional regulatory rules.
    Pham TH; Clemente JC; Satou K; Ho TB
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii101-7. PubMed ID: 16204087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors.
    Kel AE; Kel-Margoulis OV; Farnham PJ; Bartley SM; Wingender E; Zhang MQ
    J Mol Biol; 2001 May; 309(1):99-120. PubMed ID: 11491305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm.
    Zhu Z; Pilpel Y; Church GM
    J Mol Biol; 2002 Apr; 318(1):71-81. PubMed ID: 12054769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes.
    Polak P; Domany E
    BMC Genomics; 2006 Jun; 7():133. PubMed ID: 16740159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New approaches to pathogenic gene function discovery with human squamous cell cervical carcinoma by gene ontology.
    Seo MJ; Bae SM; Kim YW; Kim YW; Hur SY; Ro DY; Lee JM; Namkoong SE; Kim CK; Ahn WS
    Gynecol Oncol; 2005 Mar; 96(3):621-9. PubMed ID: 15721403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Possible role of transcription factor AP1 in the tissue-specific regulation of human papillomavirus].
    Velazquez Torres A; Gariglio Vidal P
    Rev Invest Clin; 2002; 54(3):231-42. PubMed ID: 12183893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deregulated LAP2α expression in cervical cancer associates with aberrant E2F and p53 activities.
    Ward MC; van der Watt PJ; Tzoneva G; Leaner VD
    IUBMB Life; 2011 Nov; 63(11):1018-26. PubMed ID: 21990273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA microarray screen for genes involved in c-MYC and N-MYC oncogenesis in human tumors.
    Schuldiner O; Benvenisty N
    Oncogene; 2001 Aug; 20(36):4984-94. PubMed ID: 11526483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional analysis of CXCR4, DNMT3A, DNMT3B and DNMT1 gene expression in primary advanced uterine cervical carcinoma.
    Luczak MW; Roszak A; Pawlik P; Kędzia H; Kędzia W; Malkowska-Walczak B; Lianeri M; Jagodziński PP
    Int J Oncol; 2012 Mar; 40(3):860-6. PubMed ID: 21887463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of E2F-1 to human glioma cells results in transcriptional up-regulation of Bcl-2.
    Gomez-Manzano C; Mitlianga P; Fueyo J; Lee HY; Hu M; Spurgers KB; Glass TL; Koul D; Liu TJ; McDonnell TJ; Yung WK
    Cancer Res; 2001 Sep; 61(18):6693-7. PubMed ID: 11559537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced expression of PHD2 prolyl hydroxylase gene in primary advanced uterine cervical carcinoma.
    Roszak A; Kędzia W; Malkowska-Walczak B; Pawlik P; Kędzia H; Łuczak M; Lianeri M; Jagodzinski PP
    Biomed Pharmacother; 2011 Jul; 65(4):298-302. PubMed ID: 21705185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.