These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24291302)

  • 1. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.
    Iwata M; Miyawaki-Kuwakado A; Yoshida E; Komori S; Shiraishi F
    Math Biosci; 2018 Jul; 301():21-31. PubMed ID: 29410225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of nonlinear biological phenomena modeled by S-systems.
    Mansouri MM; Nounou HN; Nounou MN; Datta AA
    Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new parametric method to smooth time-series data of metabolites in metabolic networks.
    Miyawaki A; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2016 Dec; 282():21-33. PubMed ID: 27693302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexity analysis and parameter estimation of dynamic metabolic systems.
    Tian LP; Shi ZK; Wu FX
    Comput Math Methods Med; 2013; 2013():698341. PubMed ID: 24233242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Promising Method for Calculating True Steady-State Metabolite Concentrations in Large-Scale Metabolic Reaction Network Models.
    Miyawaki-Kuwakado A; Komori S; Shiraishi F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):27-36. PubMed ID: 30004883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models.
    Baker SM; Schallau K; Junker BH
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential simulated annealing: a robust and efficient global optimization algorithm for parameter estimation of biological networks.
    Dai Z; Lai L
    Mol Biosyst; 2014 Jun; 10(6):1385-92. PubMed ID: 24714701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.
    Samal SS; Grigoriev D; Fröhlich H; Weber A; Radulescu O
    Bull Math Biol; 2015 Dec; 77(12):2180-211. PubMed ID: 26597097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient and Very Accurate Method for Calculating Steady-State Sensitivities in Metabolic Reaction Systems.
    Shiraishi F; Yoshida E; Voit EO
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1077-86. PubMed ID: 26357045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.
    Sun X; Medvedovic M
    IET Syst Biol; 2016 Feb; 10(1):10-6. PubMed ID: 26816394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.
    Jia G; Stephanopoulos GN; Gunawan R
    Bioinformatics; 2011 Jul; 27(14):1964-70. PubMed ID: 21558155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian parameter estimation for nonlinear modelling of biological pathways.
    Ghasemi O; Lindsey ML; Yang T; Nguyen N; Huang Y; Jin YF
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S9. PubMed ID: 22784628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective method to increase solvability in biochemical systems using S-system.
    Hasegawa T; Yoshimura J
    Math Biosci; 2006 May; 201(1-2):125-42. PubMed ID: 16469336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A newton cooperative genetic algorithm method for in silico optimization of metabolic pathway production.
    Ismail MA; Deris S; Mohamad MS; Abdullah A
    PLoS One; 2015; 10(5):e0126199. PubMed ID: 25961295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.