BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24291314)

  • 1. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation.
    Rai PK; Singh SP; Asthana RK; Singh S
    Bioresour Technol; 2014; 152():140-6. PubMed ID: 24291314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.
    Tian QQ; Liang L; Zhu MJ
    Bioresour Technol; 2015 Dec; 197():422-8. PubMed ID: 26356113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations.
    Wu X; Li Q; Dieudonne M; Cong Y; Zhou J; Long M
    Bioresour Technol; 2010 Dec; 101(24):9605-11. PubMed ID: 20724146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.
    Jafari O; Zilouei H
    Bioresour Technol; 2016 Aug; 214():670-678. PubMed ID: 27208737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach.
    Velmurugan R; Muthukumar K
    Bioresour Technol; 2011 Jul; 102(14):7119-23. PubMed ID: 21570831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe
    Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse.
    Cheng J; Zhu M
    Bioresour Technol; 2013 Sep; 144():623-31. PubMed ID: 23899575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.
    Kumari S; Das D
    Bioresour Technol; 2015 Oct; 194():354-63. PubMed ID: 26210150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery.
    de Vasconcelos SM; Santos AM; Rocha GJ; Souto-Maior AM
    Bioresour Technol; 2013 May; 135():46-52. PubMed ID: 23186685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biobutanol production from sugarcane bagasse by Clostridium beijerinckii strains.
    Narayanasamy S; Chan KL; Cai H; Abdul Razak AHB; Tay BK; Miao H
    Biotechnol Appl Biochem; 2020 Sep; 67(5):732-737. PubMed ID: 31758710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.
    Arumugam A; Sandhya M; Ponnusami V
    Bioresour Technol; 2014 Jul; 164():170-6. PubMed ID: 24859207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents.
    Martín C; Galbe M; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2002; 98-100():699-716. PubMed ID: 12018294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production.
    Saratale GD; Saratale RG; Lo YC; Chang JS
    Biotechnol Prog; 2010; 26(2):406-16. PubMed ID: 19941342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.
    Terán-Hilares R; Reséndiz AL; Martínez RT; Silva SS; Santos JC
    Bioresour Technol; 2016 Mar; 203():42-9. PubMed ID: 26720138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B; Ji H
    Bioresour Technol; 2019 Feb; 273():634-640. PubMed ID: 30502643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501.
    Chandel AK; Kapoor RK; Singh A; Kuhad RC
    Bioresour Technol; 2007 Jul; 98(10):1947-50. PubMed ID: 17011776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient conversion of sugarcane stalks into ethanol employing low temperature alkali pretreatment method.
    Wu L; Li Y; Arakane M; Ike M; Wada M; Terajima Y; Ishikawa S; Tokuyasu K
    Bioresour Technol; 2011 Dec; 102(24):11183-8. PubMed ID: 22000967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study and neural network modeling of sugarcane bagasse pretreatment with H2SO4 and O3 for cellulosic material conversion to sugar.
    Gitifar V; Eslamloueyan R; Sarshar M
    Bioresour Technol; 2013 Nov; 148():47-52. PubMed ID: 24035818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.