These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 24291317)
1. Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain. Wong CL; Yen HW; Lin CL; Chang JS Bioresour Technol; 2014; 152():169-76. PubMed ID: 24291317 [TBL] [Abstract][Full Text] [Related]
2. The pH effects on the distribution of 1,3-propanediol and 2,3-butanediol produced simultaneously by using an isolated indigenous Klebsiella sp. Ana-WS5. Yen HW; Li FT; Wong CL; Chang JS Bioprocess Biosyst Eng; 2014 Mar; 37(3):425-31. PubMed ID: 23852040 [TBL] [Abstract][Full Text] [Related]
3. Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. Han SH; Lee JE; Park K; Park YC N Biotechnol; 2013 Jan; 30(2):166-72. PubMed ID: 22989924 [TBL] [Abstract][Full Text] [Related]
4. The influences of pH control strategies on the distribution of 1,3-propanediols and 2,3-butanediols production by an isolated indigenous Klebsiella sp. Ana-WS5. Yen HW; Li FT; Chang JS Bioresour Technol; 2014 May; 159():292-6. PubMed ID: 24657761 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Lee S; Kim B; Park K; Um Y; Lee J Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350 [TBL] [Abstract][Full Text] [Related]
6. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. Cho S; Kim T; Woo HM; Lee J; Kim Y; Um Y PLoS One; 2015; 10(9):e0138109. PubMed ID: 26368397 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Wu KJ; Saratale GD; Lo YC; Chen WM; Tseng ZJ; Chang MC; Tsai BC; Su A; Chang JS Bioresour Technol; 2008 Nov; 99(17):7966-70. PubMed ID: 18479913 [TBL] [Abstract][Full Text] [Related]
8. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Oh BR; Lee SM; Heo SY; Seo JW; Kim CH Microb Cell Fact; 2018 Jun; 17(1):92. PubMed ID: 29907119 [TBL] [Abstract][Full Text] [Related]
9. The effects of dissolved oxygen level on the distribution of 1,3-propanediol and 2,3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Yen HW; Li FT; Chang JS Bioresour Technol; 2014 Feb; 153():374-8. PubMed ID: 24369989 [TBL] [Abstract][Full Text] [Related]
10. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca. Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754 [TBL] [Abstract][Full Text] [Related]
11. A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain. Lee S; Kim B; Yang J; Jeong D; Park S; Lee J J Biotechnol; 2015 Sep; 209():7-13. PubMed ID: 26074000 [TBL] [Abstract][Full Text] [Related]
12. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
13. Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinic acid using Klebsiella pneumoniae. Cheng KK; Wu J; Wang GY; Li WY; Feng J; Zhang JA Bioresour Technol; 2013 May; 135():500-3. PubMed ID: 23010216 [TBL] [Abstract][Full Text] [Related]
14. Improvement on bioprocess economics for 2,3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation. Maina S; Stylianou E; Vogiatzi E; Vlysidis A; Mallouchos A; Nychas GE; de Castro AM; Dheskali E; Kookos IK; Koutinas A Bioresour Technol; 2019 Feb; 274():343-352. PubMed ID: 30529482 [TBL] [Abstract][Full Text] [Related]
15. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production. Li H; Zhang G; Dang Y Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598 [TBL] [Abstract][Full Text] [Related]
16. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Meng W; Zhang Y; Cao M; Zhang W; Lü C; Yang C; Gao C; Xu P; Ma C Microb Cell Fact; 2020 Aug; 19(1):162. PubMed ID: 32778112 [TBL] [Abstract][Full Text] [Related]
17. Production of 2,3-butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate. Kim YJ; Joo HW; Park J; Kim DK; Jeong KJ; Chang YK Biotechnol Prog; 2015; 31(6):1669-75. PubMed ID: 26400837 [TBL] [Abstract][Full Text] [Related]
18. Isolation and Evaluation of Song CW; Rathnasingh C; Park JM; Lee J; Song H J Microbiol Biotechnol; 2018 Mar; 28(3):409-417. PubMed ID: 29212290 [TBL] [Abstract][Full Text] [Related]
19. 2,3-Butanediol production using soy-based nitrogen source and fermentation process evaluation by a novel isolate of Das A; Prakash G; Lali AM Prep Biochem Biotechnol; 2021; 51(10):1046-1055. PubMed ID: 33719922 [TBL] [Abstract][Full Text] [Related]
20. A newly isolated Enterobacter sp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. Palaiogeorgou AM; Papanikolaou S; de Castro AM; Freire DMG; Kookos IK; Koutinas AA FEMS Microbiol Lett; 2019 Jan; 366(1):. PubMed ID: 30476146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]