These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24291578)

  • 1. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark.
    ten Hoeve M; Hutchings NJ; Peters GM; Svanström M; Jensen LS; Bruun S
    J Environ Manage; 2014 Jan; 132():60-70. PubMed ID: 24291578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the potential of slurry management technologies to reduce the constraints of environmental legislation on pig production.
    Hutchings NJ; ten Hoeve M; Jensen R; Bruun S; Søtoft LF
    J Environ Manage; 2013 Nov; 130():447-56. PubMed ID: 24184986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - A life cycle assessment.
    Ten Hoeve M; Gómez-Muñoz B; Jensen LS; Bruun S
    J Environ Manage; 2016 Oct; 181():710-720. PubMed ID: 27566935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment.
    Lopez-Ridaura S; Werf Hv; Paillat JM; Le Bris B
    J Environ Manage; 2009 Feb; 90(2):1296-304. PubMed ID: 18793822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.
    Popovic O; Jensen LS
    Water Res; 2012 Aug; 46(12):3849-58. PubMed ID: 22591817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidification of pig slurry before separation to improve slurry management on farms.
    Regueiro I; Coutinho J; Balsari P; Popovic O; Fangueiro D
    Environ Technol; 2016 Aug; 37(15):1906-13. PubMed ID: 26695081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the slurry management strategy and the integration of the composting technology in a pig farm - Agronomical and environmental implications.
    Sáez JA; Clemente R; Bustamante MÁ; Yañez D; Bernal MP
    J Environ Manage; 2017 May; 192():57-67. PubMed ID: 28135588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of 17β-estradiol to pig slurry separates and soil in the soil-slurry environment.
    Amin MG; Petersen SO; Lægdsmand M
    J Environ Qual; 2012; 41(1):179-87. PubMed ID: 22218186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage separation and acidification of pig slurry - Nutrient separation efficiency and agronomical implications.
    Pantelopoulos A; Aronsson H
    J Environ Manage; 2021 Feb; 280():111653. PubMed ID: 33229114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage.
    Fangueiro D; Coutinho J; Chadwick D; Moreira N; Trindade H
    J Environ Qual; 2008; 37(6):2322-31. PubMed ID: 18948486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE).
    Hansen TL; Bhander GS; Christensen TH; Bruun S; Jensen LS
    Waste Manag Res; 2006 Apr; 24(2):153-66. PubMed ID: 16634230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental consequences of future biogas technologies based on separated slurry.
    Hamelin L; Wesnæs M; Wenzel H; Petersen BM
    Environ Sci Technol; 2011 Jul; 45(13):5869-77. PubMed ID: 21671646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy.
    De Vries JW; Groenestein CM; De Boer IJ
    J Environ Manage; 2012 Jul; 102():173-83. PubMed ID: 22459014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental assessment of nutrient recycling from biological pig slurry treatment--impact of fertilizer substitution and field emissions.
    Brockmann D; Hanhoun M; Négri O; Hélias A
    Bioresour Technol; 2014 Jul; 163():270-9. PubMed ID: 24821206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ammonia stripping and use of additives on separation of solids, phosphorus, copper and zinc from liquid fractions of animal slurries.
    Cattaneo M; Finzi A; Guido V; Riva E; Provolo G
    Sci Total Environ; 2019 Jul; 672():30-39. PubMed ID: 30954821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A full-scale study of treatment of pig slurry by composting: kinetic changes in chemical and microbial properties.
    Ros M; García C; Hernández T
    Waste Manag; 2006; 26(10):1108-18. PubMed ID: 16293406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimising mechanical separation of anaerobic digestate for total solids and nutrient removal.
    Cathcart A; Smyth BM; Lyons G; Murray ST; Rooney D; Johnston CR
    J Environ Manage; 2023 Nov; 345():118449. PubMed ID: 37390731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation efficiency of different solid-liquid separation technologies for slurry and gas emissions of liquid and solid fractions: A meta-analysis.
    Zhang X; Liu C; Liao W; Wang S; Zhang W; Xie J; Gao Z
    J Environ Manage; 2022 May; 310():114777. PubMed ID: 35219208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus distribution in untreated and composted solid fractions from slurry separation.
    Jorgensen K; Magid J; Luxhoi J; Jensen LS
    J Environ Qual; 2010; 39(1):393-401. PubMed ID: 20048327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling.
    Andersen JK; Boldrin A; Christensen TH; Scheutz C
    Waste Manag; 2012 Jan; 32(1):31-40. PubMed ID: 21975300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.