These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24291601)
21. Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure. Chanu NK; Mandal MK; Srivastava A; Chaurasia N Environ Sci Pollut Res Int; 2022 Mar; 29(13):19762-19777. PubMed ID: 34718975 [TBL] [Abstract][Full Text] [Related]
22. Identification and functional characterization of four novel aldo/keto reductases in Anabaena sp. PCC 7120 by integrating wet lab with in silico approaches. Agrawal C; Yadav S; Rai S; Chatterjee A; Sen S; Rai R; Rai LC Funct Integr Genomics; 2017 Jul; 17(4):413-425. PubMed ID: 28190210 [TBL] [Abstract][Full Text] [Related]
23. The two-component response regulator OrrA confers dehydration tolerance by regulating avaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120. Kimura S; Sato M; Fan X; Ohmori M; Ehira S Environ Microbiol; 2022 Nov; 24(11):5165-5173. PubMed ID: 36054741 [TBL] [Abstract][Full Text] [Related]
24. A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations. Narayan OP; Kumari N; Bhargava P; Rajaram H; Rai LC Funct Integr Genomics; 2016 Jan; 16(1):67-78. PubMed ID: 26438164 [TBL] [Abstract][Full Text] [Related]
25. Comparative proteomics of wild type, An+ahpC and An∆ahpC strains of Anabaena sp. PCC7120 demonstrates AhpC mediated augmentation of photosynthesis, N2-fixation and modulation of regulatory network of antioxidative proteins. Shrivastava AK; Pandey S; Yadav S; Mishra Y; Singh PK; Rai R; Singh S; Rai S; Rai LC J Proteomics; 2016 May; 140():81-99. PubMed ID: 27102494 [TBL] [Abstract][Full Text] [Related]
26. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. Banerjee M; Chakravarty D; Ballal A BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452 [TBL] [Abstract][Full Text] [Related]
27. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp. Yadav RK; Thagela P; Tripathi K; Abraham G World J Microbiol Biotechnol; 2016 Sep; 32(9):147. PubMed ID: 27430514 [TBL] [Abstract][Full Text] [Related]
28. The Absence of Thioredoxin m1 and Thioredoxin C in Anabaena sp. PCC 7120 Leads to Oxidative Stress. Deschoenmaeker F; Mihara S; Niwa T; Taguchi H; Wakabayashi KI; Hisabori T Plant Cell Physiol; 2018 Dec; 59(12):2432-2441. PubMed ID: 30101290 [TBL] [Abstract][Full Text] [Related]
29. Characterization of two naturally truncated, Ssb-like proteins from the nitrogen-fixing cyanobacterium, Anabaena sp. PCC7120. Kirti A; Rajaram H; Apte SK Photosynth Res; 2013 Nov; 118(1-2):147-54. PubMed ID: 23928723 [TBL] [Abstract][Full Text] [Related]
30. Syntrophic biodegradation of butachlor by Mycobacterium sp. J7A and Sphingobium sp. J7B isolated from rice paddy soil. Kim NH; Kim DU; Kim I; Ka JO FEMS Microbiol Lett; 2013 Jul; 344(2):114-20. PubMed ID: 23617893 [TBL] [Abstract][Full Text] [Related]
31. Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition. Mohanty SR; Nayak DR; Babu YJ; Adhya TK Microbiol Res; 2004; 159(3):193-201. PubMed ID: 15462519 [TBL] [Abstract][Full Text] [Related]
32. The Two TpsB-Like Proteins in Ngo G; Girbas M; Schätzle H; Hammer A; Safarian S; Hübinger M; Schleiff E J Bacteriol; 2021 Jan; 203(4):. PubMed ID: 33257527 [TBL] [Abstract][Full Text] [Related]
33. Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. Irisarri P; Gonnet S; Monza J J Biotechnol; 2001 Oct; 91(2-3):95-103. PubMed ID: 11566382 [TBL] [Abstract][Full Text] [Related]
34. Physiological and Proteomic Studies of the Cyanobacterium Anabaena sp. Acclimated to Desiccation Stress. Yadav RK; Tripathi K; Varghese E; Abraham G Curr Microbiol; 2021 Jun; 78(6):2429-2439. PubMed ID: 33983480 [TBL] [Abstract][Full Text] [Related]
35. Nickel and arsenite-induced differential oxidative stress and antioxidant responses in two Anabaena species. Prajapati R; Yadav S; Atri N J Basic Microbiol; 2018 Dec; 58(12):1061-1070. PubMed ID: 30207396 [TBL] [Abstract][Full Text] [Related]
36. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. T V D; Chandwadkar P; Acharya C Aquat Toxicol; 2018 Jun; 199():152-161. PubMed ID: 29626757 [TBL] [Abstract][Full Text] [Related]
37. Functional Characterization of Alr0765, A Hypothetical Protein from Chatterjee A; Singh S; Rai R; Rai S; Rai LC Curr Genomics; 2020 May; 21(4):295-310. PubMed ID: 33071622 [TBL] [Abstract][Full Text] [Related]
38. Effect of Singh H; Apte SK Protein J; 2018 Dec; 37(6):608-621. PubMed ID: 30361938 [TBL] [Abstract][Full Text] [Related]
39. The occurrence of the cis/trans geometric isomerism of myxoxanthophyll and 4-ketomyxoxanthophyll in the cyanobacterium Anabaena sp. PCC7120. Żbik P; Malec P Acta Biochim Pol; 2022 Aug; 69(3):523-529. PubMed ID: 36041059 [TBL] [Abstract][Full Text] [Related]
40. Effects of butachlor on microbial populations and enzyme activities in paddy soil. Min H; Ye YF; Chen ZY; Wu WX; Yufeng D J Environ Sci Health B; 2001 Sep; 36(5):581-95. PubMed ID: 11599722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]