These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24291612)
1. Evaluation of effects of long term exposure on lethal toxicity with mammals. Verma V; Yu QJ; Connell DW Environ Pollut; 2014 Feb; 185():234-9. PubMed ID: 24291612 [TBL] [Abstract][Full Text] [Related]
2. Reduced life expectancy model for effects of long term exposure on lethal toxicity with fish. Verma V; Yu QJ; Connell DW ISRN Toxicol; 2013 Dec; 2013():230763. PubMed ID: 24455314 [TBL] [Abstract][Full Text] [Related]
3. A comparison of Reduced Life Expectancy (RLE) model with Haber's Rule to describe effects of exposure time on toxicity. Verma V; Yu QJ; Connell DW Environ Pollut; 2015 Sep; 204():26-31. PubMed ID: 25898234 [TBL] [Abstract][Full Text] [Related]
4. Influence of exposure time on toxicity-An overview. Connell DW; Yu QJ; Verma V Toxicology; 2016 Apr; 355-356():49-53. PubMed ID: 27216426 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of effects of exposure time on aquatic toxicity with zooplanktons using a reduced life expectancy model. Verma V; Yu QJ; Connell DW Chemosphere; 2012 Nov; 89(9):1026-33. PubMed ID: 22698374 [TBL] [Abstract][Full Text] [Related]
6. Development and application of an oil toxicity and exposure model, OilToxEx. French-McCay DP Environ Toxicol Chem; 2002 Oct; 21(10):2080-94. PubMed ID: 12371484 [TBL] [Abstract][Full Text] [Related]
7. Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals. Hendriks AJ Ecotoxicol Environ Saf; 1995 Nov; 32(2):103-30. PubMed ID: 8575356 [TBL] [Abstract][Full Text] [Related]
8. Use of exposure time and life expectancy in models for toxicity to aquatic organisms. Connell D; Yu J Mar Pollut Bull; 2008; 57(6-12):245-9. PubMed ID: 18471833 [TBL] [Abstract][Full Text] [Related]
9. Improved approaches to assessing long-term risks to birds and mammals. Hart AD; Thompson HM Ecotoxicology; 2005 Nov; 14(8):771-3. PubMed ID: 16292618 [No Abstract] [Full Text] [Related]
10. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals. Crane M; Finnegan M; Weltje L; Kosmala-Grzechnik S; Gross M; Wheeler JR Regul Toxicol Pharmacol; 2016 Oct; 80():335-41. PubMed ID: 27177821 [TBL] [Abstract][Full Text] [Related]
11. A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Teeguarden JG; Hanson-Drury S Food Chem Toxicol; 2013 Dec; 62():935-48. PubMed ID: 23867546 [TBL] [Abstract][Full Text] [Related]
12. Advancing exposure characterization for chemical evaluation and risk assessment. Cohen Hubal EA; Richard A; Aylward L; Edwards S; Gallagher J; Goldsmith MR; Isukapalli S; Tornero-Velez R; Weber E; Kavlock R J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):299-313. PubMed ID: 20574904 [TBL] [Abstract][Full Text] [Related]
13. Use of an exposure chamber to maintain aqueous phase nanoparticle dispersions for improved toxicity testing in fish. Boyle D; Boran H; Atfield AJ; Henry TB Environ Toxicol Chem; 2015 Mar; 34(3):583-8. PubMed ID: 25545389 [TBL] [Abstract][Full Text] [Related]
14. Application of a sigmapolycyclic aromatic hydrocarbon model and a logistic regression model to sediment toxicity data based on a species-specific, water-only LC50 toxic unit for Hyalella azteca. Lee JH; Landrum PF; Field LJ; Koh CH Environ Toxicol Chem; 2001 Sep; 20(9):2102-13. PubMed ID: 11521842 [TBL] [Abstract][Full Text] [Related]
15. [Methodological approaches to evaluation of the toxicity of insecticides]. Mal'tseva MM; Zaeva GN; Rysina TZ; Timofievskaia LA Gig Sanit; 2000; (6):54-8. PubMed ID: 11322119 [No Abstract] [Full Text] [Related]
16. A model for non-specific toxicity with aquatic organisms over relatively long periods of exposure time. Yu Q; Chaisuksant Y; Connell D Chemosphere; 1999 Feb; 38(4):909-18. PubMed ID: 10903121 [TBL] [Abstract][Full Text] [Related]
17. The discrimination of excess toxicity from baseline effect: effect of bioconcentration. Su LM; Liu X; Wang Y; Li JJ; Wang XH; Sheng LX; Zhao YH Sci Total Environ; 2014 Jun; 484():137-45. PubMed ID: 24698800 [TBL] [Abstract][Full Text] [Related]
18. Alternative acute inhalation toxicity testing by determination of the concentration-time-mortality relationship: experimental comparison with standard LC50 testing. Zwart A; Arts JH; ten Berge WF; Appelman LM Regul Toxicol Pharmacol; 1992 Jun; 15(3):278-90. PubMed ID: 1509121 [TBL] [Abstract][Full Text] [Related]
19. Extrapolation of available acute and chronic toxicity test data to population-level effects for ecological risk management of chemicals. Lin BL; Meng Y Environ Toxicol Chem; 2009 Jul; 28(7):1557-66. PubMed ID: 19239318 [TBL] [Abstract][Full Text] [Related]
20. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel. Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]