These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 24291788)
1. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts. Schatz H; Gupta S; Möller P; Beard M; Brown EF; Deibel AT; Gasques LR; Hix WR; Keek L; Lau R; Steiner AW; Wiescher M Nature; 2014 Jan; 505(7481):62-5. PubMed ID: 24291788 [TBL] [Abstract][Full Text] [Related]
2. Mass Measurement of 56Sc Reveals a Small A = 56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust. Meisel Z; George S; Ahn S; Bazin D; Brown BA; Browne J; Carpino JF; Chung H; Cole AL; Cyburt RH; Estradé A; Famiano M; Gade A; Langer C; Matoš M; Mittig W; Montes F; Morrissey DJ; Pereira J; Schatz H; Schatz J; Scott M; Shapira D; Smith K; Stevens J; Tan W; Tarasov O; Towers S; Wimmer K; Winkelbauer JR; Yurkon J; Zegers RG Phys Rev Lett; 2015 Oct; 115(16):162501. PubMed ID: 26550869 [TBL] [Abstract][Full Text] [Related]
3. Urca Cooling in Neutron Star Crusts and Oceans: Effects of Nuclear Excitations. Wang LJ; Tan L; Li Z; Misch GW; Sun Y Phys Rev Lett; 2021 Oct; 127(17):172702. PubMed ID: 34739274 [TBL] [Abstract][Full Text] [Related]
4. β Decay of ^{61}V and its Role in Cooling Accreted Neutron Star Crusts. Ong WJ; Brown EF; Browne J; Ahn S; Childers K; Crider BP; Dombos AC; Gupta SS; Hitt GW; Langer C; Lewis R; Liddick SN; Lyons S; Meisel Z; Möller P; Montes F; Naqvi F; Pereira J; Prokop C; Richman D; Schatz H; Schmidt K; Spyrou A Phys Rev Lett; 2020 Dec; 125(26):262701. PubMed ID: 33449748 [TBL] [Abstract][Full Text] [Related]
5. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29. Brown EF; Cumming A; Fattoyev FJ; Horowitz CJ; Page D; Reddy S Phys Rev Lett; 2018 May; 120(18):182701. PubMed ID: 29775364 [TBL] [Abstract][Full Text] [Related]
6. Time-of-flight mass measurements for nuclear processes in neutron star crusts. Estradé A; Matoš M; Schatz H; Amthor AM; Bazin D; Beard M; Becerril A; Brown EF; Cyburt R; Elliot T; Gade A; Galaviz D; George S; Gupta SS; Hix WR; Lau R; Lorusso G; Möller P; Pereira J; Portillo M; Rogers AM; Shapira D; Smith E; Stolz A; Wallace M; Wiescher M Phys Rev Lett; 2011 Oct; 107(17):172503. PubMed ID: 22107512 [TBL] [Abstract][Full Text] [Related]
7. Neutron reactions in accreting neutron stars: a new pathway to efficient crust heating. Gupta SS; Kawano T; Möller P Phys Rev Lett; 2008 Dec; 101(23):231101. PubMed ID: 19113537 [TBL] [Abstract][Full Text] [Related]
8. Thermal conductivity and phase separation of the crust of accreting neutron stars. Horowitz CJ; Caballero OL; Berry DK Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026103. PubMed ID: 19391802 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamically Consistent Equation of State for an Accreted Neutron Star Crust. Gusakov ME; Chugunov AI Phys Rev Lett; 2020 May; 124(19):191101. PubMed ID: 32469588 [TBL] [Abstract][Full Text] [Related]
10. Forecasting neutron star temperatures: predictability and variability. Page D; Reddy S Phys Rev Lett; 2013 Dec; 111(24):241102. PubMed ID: 24483640 [TBL] [Abstract][Full Text] [Related]
11. Localized thermonuclear bursts from accreting magnetic white dwarfs. Scaringi S; Groot PJ; Knigge C; Bird AJ; Breedt E; Buckley DAH; Cavecchi Y; Degenaar ND; de Martino D; Done C; Fratta M; Iłkiewicz K; Koerding E; Lasota JP; Littlefield C; Manara CF; O'Brien M; Szkody P; Timmes FX Nature; 2022 Apr; 604(7906):447-450. PubMed ID: 35444319 [TBL] [Abstract][Full Text] [Related]
12. Gapless Neutron Superfluidity Can Explain the Late Time Cooling of Transiently Accreting Neutron Stars. Allard V; Chamel N Phys Rev Lett; 2024 May; 132(18):181001. PubMed ID: 38759181 [TBL] [Abstract][Full Text] [Related]
14. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars. Horowitz CJ; Berry DK; Briggs CM; Caplan ME; Cumming A; Schneider AS Phys Rev Lett; 2015 Jan; 114(3):031102. PubMed ID: 25658989 [TBL] [Abstract][Full Text] [Related]
15. Phase transitions in nucleonic matter and neutron-star cooling. Khodel VA; Clark JW; Takano M; Zverev MV Phys Rev Lett; 2004 Oct; 93(15):151101. PubMed ID: 15524862 [TBL] [Abstract][Full Text] [Related]
16. Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn. Wolf RN; Beck D; Blaum K; Böhm Ch; Borgmann Ch; Breitenfeldt M; Chamel N; Goriely S; Herfurth F; Kowalska M; Kreim S; Lunney D; Manea V; Minaya Ramirez E; Naimi S; Neidherr D; Rosenbusch M; Schweikhard L; Stanja J; Wienholtz F; Zuber K Phys Rev Lett; 2013 Jan; 110(4):041101. PubMed ID: 25166148 [TBL] [Abstract][Full Text] [Related]
17. End point of the rp process on accreting neutron stars. Schatz H; Aprahamian A; Barnard V; Bildsten L; Cumming A; Ouellette M; Rauscher T; Thielemann FK; Wiescher M Phys Rev Lett; 2001 Apr; 86(16):3471-4. PubMed ID: 11328001 [TBL] [Abstract][Full Text] [Related]
18. Thermonuclear explosions on neutron stars reveal the speed of their jets. Russell TD; Degenaar N; van den Eijnden J; Maccarone T; Tetarenko AJ; Sánchez-Fernández C; Miller-Jones JCA; Kuulkers E; Del Santo M Nature; 2024 Mar; 627(8005):763-766. PubMed ID: 38538938 [TBL] [Abstract][Full Text] [Related]
19. Towards a metallurgy of neutron star crusts. Kobyakov D; Pethick CJ Phys Rev Lett; 2014 Mar; 112(11):112504. PubMed ID: 24702357 [TBL] [Abstract][Full Text] [Related]
20. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Chakrabarty D; Morgan EH; Muno MP; Galloway DK; Wijnands R; Van Der Klis M; Markwardt CB Nature; 2003 Jul; 424(6944):42-4. PubMed ID: 12840751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]