These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24291788)

  • 21. From hadrons to quarks in neutron stars: a review.
    Baym G; Hatsuda T; Kojo T; Powell PD; Song Y; Takatsuka T
    Rep Prog Phys; 2018 May; 81(5):056902. PubMed ID: 29424363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superfluid heat conduction and the cooling of magnetized neutron stars.
    Aguilera DN; Cirigliano V; Pons JA; Reddy S; Sharma R
    Phys Rev Lett; 2009 Mar; 102(9):091101. PubMed ID: 19392503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase separation in the crust of accreting neutron stars.
    Horowitz CJ; Berry DK; Brown EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066101. PubMed ID: 17677319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
    Gilfanov M; Bogdán A
    Nature; 2010 Feb; 463(7283):924-5. PubMed ID: 20164924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of new data for neutron-rich heavy nuclei on theoretical models for r-process nucleosynthesis.
    Kajino T; Mathews GJ
    Rep Prog Phys; 2017 Aug; 80(8):084901. PubMed ID: 28357989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TeV mu neutrinos from young neutron stars.
    Link B; Burgio F
    Phys Rev Lett; 2005 May; 94(18):181101. PubMed ID: 15904352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic field evolution in magnetar crusts through three-dimensional simulations.
    Gourgouliatos KN; Wood TS; Hollerbach R
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3944-9. PubMed ID: 27035962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts.
    Janka H; Eberl T; Ruffert M; Fryer CL
    Astrophys J; 1999 Dec; 527(1):L39-L42. PubMed ID: 10566994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TeV neutrinos and GeV photons from shock breakout in supernovae.
    Waxman E; Loeb A
    Phys Rev Lett; 2001 Aug; 87(7):071101. PubMed ID: 11497877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of an Exceptionally Strong β-Decay Transition of ^{20}F and Implications for the Fate of Intermediate-Mass Stars.
    Kirsebom OS; Jones S; Strömberg DF; Martínez-Pinedo G; Langanke K; Röpke FK; Brown BA; Eronen T; Fynbo HOU; Hukkanen M; Idini A; Jokinen A; Kankainen A; Kostensalo J; Moore I; Möller H; Ohlmann ST; Penttilä H; Riisager K; Rinta-Antila S; Srivastava PC; Suhonen J; Trzaska WH; Äystö J
    Phys Rev Lett; 2019 Dec; 123(26):262701. PubMed ID: 31951442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constraining a possible time variation of the gravitational constant through "gravitochemical heating" of neutron stars.
    Jofré P; Reisenegger A; Fernández R
    Phys Rev Lett; 2006 Sep; 97(13):131102. PubMed ID: 17026021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constraints on neutron star crusts from oscillations in giant flares.
    Steiner AW; Watts AL
    Phys Rev Lett; 2009 Oct; 103(18):181101. PubMed ID: 19905795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. r-Mode Runaway and Rapidly Rotating Neutron Stars.
    Andersson N; Jones DI; Kokkotas KD; Stergioulas N
    Astrophys J; 2000 May; 534(1):L75-L78. PubMed ID: 10790075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breaking strain of neutron star crust and gravitational waves.
    Horowitz CJ; Kadau K
    Phys Rev Lett; 2009 May; 102(19):191102. PubMed ID: 19518937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the hidden interior of the Earth with directional neutrino measurements.
    Leyton M; Dye S; Monroe J
    Nat Commun; 2017 Jul; 8():15989. PubMed ID: 28691700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter.
    Page D; Prakash M; Lattimer JM; Steiner AW
    Phys Rev Lett; 2011 Feb; 106(8):081101. PubMed ID: 21405561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for heating of neutron stars by magnetic-field decay.
    Pons JA; Link B; Miralles JA; Geppert U
    Phys Rev Lett; 2007 Feb; 98(7):071101. PubMed ID: 17359011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.
    Watanabe G; Pethick CJ
    Phys Rev Lett; 2017 Aug; 119(6):062701. PubMed ID: 28949649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.
    Ho WC; Heinke CO
    Nature; 2009 Nov; 462(7269):71-3. PubMed ID: 19890325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two populations of X-ray pulsars produced by two types of supernova.
    Knigge C; Coe MJ; Podsiadlowski P
    Nature; 2011 Nov; 479(7373):372-5. PubMed ID: 22080948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.