BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24291805)

  • 1. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber.
    Cheri MS; Latifi H; Aghbolagh FB; Naeini OR; Taghavi M; Ghaderi M
    Appl Opt; 2013 May; 52(14):3420-7. PubMed ID: 23669859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Newtonian fluid pressure in microcantilever integrated flexible microfluidic channel for healthcare application.
    Saxena A; Kumar M; Mishra D; Singh K
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38452735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 10 μm thick ultrathin glass sheet to realize a highly sensitive cantilever for precise cell stiffness measurement.
    Yuan Y; Ma D; Liu X; Tang T; Li M; Yang Y; Yalikun Y; Tanaka Y
    Lab Chip; 2023 Aug; 23(16):3651-3661. PubMed ID: 37449439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding.
    Kamat AM; Zheng X; Jayawardhana B; Kottapalli AGP
    Nanotechnology; 2021 Feb; 32(9):095501. PubMed ID: 33217747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching.
    Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H
    Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.
    Noeth N; Keller SS; Boisen A
    Sensors (Basel); 2013 Dec; 14(1):229-44. PubMed ID: 24366179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabry-Pérot cavity sensor-based optofluidic gas chromatography using a microfabricated passive preconcentrator/injector.
    Seo JH; Liu J; Fan X; Kurabayashi K
    Lab Chip; 2013 Mar; 13(5):851-9. PubMed ID: 23295709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. μ-'Diving suit' for liquid-phase high-Q resonant detection.
    Yu H; Chen Y; Xu P; Xu T; Bao Y; Li X
    Lab Chip; 2016 Mar; 16(5):902-10. PubMed ID: 26829920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generic "micro-Stoney" method for the measurement of internal stress and elastic modulus of ultrathin films.
    Favache A; Ryelandt S; Melchior M; Zeb G; Carbonnelle P; Raskin JP; Pardoen T
    Rev Sci Instrum; 2016 Jan; 87(1):015002. PubMed ID: 26827345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in-plane optofluidic microchip for focal point control.
    Chao KS; Lin MS; Yang RJ
    Lab Chip; 2013 Oct; 13(19):3886-92. PubMed ID: 23918038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SU8 diaphragm micropump with monolithically integrated cantilever check valves.
    Ezkerra A; Fernández LJ; Mayora K; Ruano-López JM
    Lab Chip; 2011 Oct; 11(19):3320-5. PubMed ID: 21853192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Extraction Method of Young's Modulus for Multilayer Films in MEMS Applications.
    Guo XG; Zhou ZF; Sun C; Li WH; Huang QA
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione.
    Supharoek SA; Youngvises N; Jakmunee J
    Anal Sci; 2012; 28(7):651-6. PubMed ID: 22790365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating.
    Hanada Y; Sugioka K; Midorikawa K
    Lab Chip; 2012 Oct; 12(19):3688-93. PubMed ID: 22814524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.