These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 24292202)
1. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Kumar K; Banerjee D; Das D Bioresour Technol; 2014; 152():225-33. PubMed ID: 24292202 [TBL] [Abstract][Full Text] [Related]
2. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Kumar K; Das D Bioresour Technol; 2012 Jul; 116():307-13. PubMed ID: 22525259 [TBL] [Abstract][Full Text] [Related]
3. Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Kumar K; Roy S; Das D Bioresour Technol; 2013 Oct; 145():116-22. PubMed ID: 23453984 [TBL] [Abstract][Full Text] [Related]
4. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094 [TBL] [Abstract][Full Text] [Related]
5. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
6. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
7. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Yadav G; Karemore A; Dash SK; Sen R Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786 [TBL] [Abstract][Full Text] [Related]
9. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Praveenkumar R; Kim B; Choi E; Lee K; Park JY; Lee JS; Lee YC; Oh YK Bioresour Technol; 2014 Nov; 171():500-5. PubMed ID: 25227588 [TBL] [Abstract][Full Text] [Related]
10. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Kastánek F; Sabata S; Solcová O; Maléterová Y; Kastánek P; Brányiková I; Kuthan K; Zachleder V Waste Manag Res; 2010 Nov; 28(11):961-6. PubMed ID: 20671004 [TBL] [Abstract][Full Text] [Related]
11. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
12. Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production. Yun HS; Ji MK; Park YT; Salama el-S; Choi J Environ Sci Pollut Res Int; 2016 Sep; 23(17):17831-9. PubMed ID: 27250092 [TBL] [Abstract][Full Text] [Related]
13. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor. Kargupta W; Ganesh A; Mukherji S Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Douskova I; Doucha J; Livansky K; Machat J; Novak P; Umysova D; Zachleder V; Vitova M Appl Microbiol Biotechnol; 2009 Feb; 82(1):179-85. PubMed ID: 19096837 [TBL] [Abstract][Full Text] [Related]
15. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K Bioresour Technol; 2013 May; 136():496-501. PubMed ID: 23567722 [TBL] [Abstract][Full Text] [Related]
16. Performance evaluation of an outdoor algal biorefinery for sustainable production of biomass, lipid and lutein valorizing flue-gas carbon dioxide and wastewater cocktail. De Bhowmick G; Sarmah AK; Sen R Bioresour Technol; 2019 Jul; 283():198-206. PubMed ID: 30908984 [TBL] [Abstract][Full Text] [Related]
17. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2. Chen W; Zhang S; Rong J; Li X; Chen H; He C; Wang Q Environ Sci Technol; 2016 Feb; 50(3):1620-7. PubMed ID: 26751001 [TBL] [Abstract][Full Text] [Related]
18. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants. Tian S; Jiang J; Chen X; Yan F; Li K ChemSusChem; 2013 Dec; 6(12):2348-55. PubMed ID: 23913597 [TBL] [Abstract][Full Text] [Related]
19. Mixed microalgae consortia growth under higher concentration of CO Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147 [TBL] [Abstract][Full Text] [Related]
20. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Tanadul OU; VanderGheynst JS; Beckles DM; Powell AL; Labavitch JM Biotechnol Bioeng; 2014 Jul; 111(7):1323-31. PubMed ID: 24474069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]