These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24292419)

  • 1. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes.
    Lin F; Boettcher SW
    Nat Mater; 2014 Jan; 13(1):81-6. PubMed ID: 24292419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Electrocatalyst Activity and Ion Permeability on Water-Splitting Photoanodes.
    Lin F; Bachman BF; Boettcher SW
    J Phys Chem Lett; 2015 Jul; 6(13):2427-33. PubMed ID: 26266713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.
    Xu Z; Wang H; Wen Y; Li W; Sun C; He Y; Shi Z; Pei L; Chen Y; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3624-3633. PubMed ID: 29308871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.
    McDowell MT; Lichterman MF; Carim AI; Liu R; Hu S; Brunschwig BS; Lewis NS
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15189-99. PubMed ID: 26083827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry.
    Laskowski FAL; Oener SZ; Nellist MR; Gordon AM; Bain DC; Fehrs JL; Boettcher SW
    Nat Mater; 2020 Jan; 19(1):69-76. PubMed ID: 31591528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting the Crystallinity of Mesoporous Spinel CoGa2O4 for Efficient Water Oxidation.
    Xu Z; Yan SC; Shi Z; Yao YF; Zhou P; Wang HY; Zou ZG
    ACS Appl Mater Interfaces; 2016 May; 8(20):12887-93. PubMed ID: 27142693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Carrier Dynamics at the CuWO
    Shadabipour P; Raithel AL; Hamann TW
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50592-50599. PubMed ID: 33119249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting.
    Mills TJ; Lin F; Boettcher SW
    Phys Rev Lett; 2014 Apr; 112(14):148304. PubMed ID: 24766026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation.
    He L; Zhou W; Hong L; Wei D; Wang G; Shi X; Shen S
    J Phys Chem Lett; 2019 May; 10(9):2278-2285. PubMed ID: 31002523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and Robust Photothermal-Heating-Enabled High-Efficiency Photoelectrochemical Water Splitting.
    He B; Jia S; Zhao M; Wang Y; Chen T; Zhao S; Li Z; Lin Z; Zhao Y; Liu X
    Adv Mater; 2021 Apr; 33(16):e2004406. PubMed ID: 33734506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation.
    Digdaya IA; Adhyaksa GWP; TrzeĊ›niewski BJ; Garnett EC; Smith WA
    Nat Commun; 2017 Jun; 8():15968. PubMed ID: 28660883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation.
    Cai Q; Hong W; Jian C; Liu W
    Nanoscale; 2020 Apr; 12(14):7550-7556. PubMed ID: 32227016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Three-Dimensional Branched TiO
    Liu C; Zhang C; Yin G; Zhang T; Wang W; Ou G; Jin H; Chen Z
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13301-13310. PubMed ID: 33723983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation.
    Yao T; Chen R; Li J; Han J; Qin W; Wang H; Shi J; Fan F; Li C
    J Am Chem Soc; 2016 Oct; 138(41):13664-13672. PubMed ID: 27653158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite.
    Qiu J; Hajibabaei H; Nellist MR; Laskowski FAL; Hamann TW; Boettcher SW
    ACS Cent Sci; 2017 Sep; 3(9):1015-1025. PubMed ID: 28979943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes.
    Yang J; Cooper JK; Toma FM; Walczak KA; Favaro M; Beeman JW; Hess LH; Wang C; Zhu C; Gul S; Yano J; Kisielowski C; Schwartzberg A; Sharp ID
    Nat Mater; 2017 Mar; 16(3):335-341. PubMed ID: 27820814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni-FeOOH Nanorods for Zero-Onset-Potential Water Splitting.
    Li B; Jian J; Chen J; Yu X; Sun J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7038-7046. PubMed ID: 31967447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.