These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 24292480)
1. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media. Wei CJ; Li XY Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480 [TBL] [Abstract][Full Text] [Related]
2. Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application. Wei CJ; Xie YF; Wang XM; Li XY Chemosphere; 2018 Sep; 207():715-724. PubMed ID: 29859484 [TBL] [Abstract][Full Text] [Related]
3. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns. Hu YB; Zhang M; Li XY Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676 [TBL] [Abstract][Full Text] [Related]
4. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media. Su Y; Zhao YS; Li LL; Qin CY; Wu F; Geng NN; Lei JS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1639-52. PubMed ID: 25320851 [TBL] [Abstract][Full Text] [Related]
5. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744 [TBL] [Abstract][Full Text] [Related]
6. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. HonetschlÄgerová L; Janouškovcová P; Kubal M Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314 [TBL] [Abstract][Full Text] [Related]
7. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
8. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
9. Chromium removal using resin supported nanoscale zero-valent iron. Fu F; Ma J; Xie L; Tang B; Han W; Lin S J Environ Manage; 2013 Oct; 128():822-7. PubMed ID: 23867839 [TBL] [Abstract][Full Text] [Related]
10. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Shi LN; Zhang X; Chen ZL Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833 [TBL] [Abstract][Full Text] [Related]
11. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Laumann S; Micić V; Hofmann T Water Res; 2014 Mar; 50():70-9. PubMed ID: 24361704 [TBL] [Abstract][Full Text] [Related]
12. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Raychoudhury T; Naja G; Ghoshal S J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540 [TBL] [Abstract][Full Text] [Related]
13. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Lowry GV J Contam Hydrol; 2010 Nov; 118(3-4):152-64. PubMed ID: 20926157 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. Petala E; Dimos K; Douvalis A; Bakas T; Tucek J; Zbořil R; Karakassides MA J Hazard Mater; 2013 Oct; 261():295-306. PubMed ID: 23959249 [TBL] [Abstract][Full Text] [Related]
15. Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). Shi J; Wang J; Wang W; Teng W; Zhang WX J Environ Sci (China); 2019 Jul; 81():28-33. PubMed ID: 30975326 [TBL] [Abstract][Full Text] [Related]
16. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. Zhang Y; Su Y; Zhou X; Dai C; Keller AA J Hazard Mater; 2013 Dec; 263 Pt 2():685-93. PubMed ID: 24231326 [TBL] [Abstract][Full Text] [Related]
17. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Laumann S; Micić V; Lowry GV; Hofmann T Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Yan W; Herzing AA; Kiely CJ; Zhang WX J Contam Hydrol; 2010 Nov; 118(3-4):96-104. PubMed ID: 20889228 [TBL] [Abstract][Full Text] [Related]
19. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703 [TBL] [Abstract][Full Text] [Related]
20. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]