These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24292825)

  • 21. Targeting individual GPCRs with redesigned nonvisual arrestins.
    Gimenez LE; Vishnivetskiy SA; Gurevich VV
    Handb Exp Pharmacol; 2014; 219():153-70. PubMed ID: 24292829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological Role of Arrestin-1 Oligomerization.
    Samaranayake S; Vishnivetskiy SA; Shores CR; Thibeault KC; Kook S; Chen J; Burns ME; Gurevich EV; Gurevich VV
    J Neurosci; 2020 Oct; 40(42):8055-8069. PubMed ID: 32948676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
    Shi GW; Chen J; Concepcion F; Motamedchaboki K; Marjoram P; Langen R; Chen J
    J Biol Chem; 2005 Dec; 280(50):41184-91. PubMed ID: 16219764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct binding of visual arrestin to microtubules determines the differential subcellular localization of its splice variants in rod photoreceptors.
    Nair KS; Hanson SM; Kennedy MJ; Hurley JB; Gurevich VV; Slepak VZ
    J Biol Chem; 2004 Sep; 279(39):41240-8. PubMed ID: 15272005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.
    Zhuang T; Chen Q; Cho MK; Vishnivetskiy SA; Iverson TM; Gurevich VV; Sanders CR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):942-7. PubMed ID: 23277586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Each rhodopsin molecule binds its own arrestin.
    Hanson SM; Gurevich EV; Vishnivetskiy SA; Ahmed MR; Song X; Gurevich VV
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3125-8. PubMed ID: 17360618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arrestin and its splice variant Arr1-370A (p44). Mechanism and biological role of their interaction with rhodopsin.
    Schröder K; Pulvermüller A; Hofmann KP
    J Biol Chem; 2002 Nov; 277(46):43987-96. PubMed ID: 12194979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of arrestin binding by rhodopsin phosphorylation level.
    Vishnivetskiy SA; Raman D; Wei J; Kennedy MJ; Hurley JB; Gurevich VV
    J Biol Chem; 2007 Nov; 282(44):32075-83. PubMed ID: 17848565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of purified recombinant beta-arrestin to guanine-nucleotide-binding-protein-coupled receptors.
    Söhlemann P; Hekman M; Puzicha M; Buchen C; Lohse MJ
    Eur J Biochem; 1995 Sep; 232(2):464-72. PubMed ID: 7556195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
    Moaven H; Koike Y; Jao CC; Gurevich VV; Langen R; Chen J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9463-8. PubMed ID: 23690606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin.
    Strissel KJ; Sokolov M; Trieu LH; Arshavsky VY
    J Neurosci; 2006 Jan; 26(4):1146-53. PubMed ID: 16436601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arrestin Facilitates Rhodopsin Dephosphorylation
    Hsieh CL; Yao Y; Gurevich VV; Chen J
    J Neurosci; 2022 Apr; 42(17):3537-3545. PubMed ID: 35332081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
    Doan T; Azevedo AW; Hurley JB; Rieke F
    J Neurosci; 2009 Sep; 29(38):11867-79. PubMed ID: 19776273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms.
    Gurevich VV
    J Biol Chem; 1998 Jun; 273(25):15501-6. PubMed ID: 9624137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arrestin-1 engineering facilitates complex stabilization with native rhodopsin.
    Haider RS; Wilhelm F; Rizk A; Mutt E; Deupi X; Peterhans C; Mühle J; Berger P; Schertler GFX; Standfuss J; Ostermaier MK
    Sci Rep; 2019 Jan; 9(1):439. PubMed ID: 30679635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.