BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24292827)

  • 1. Cone arrestin: deciphering the structure and functions of arrestin 4 in vision.
    Craft CM; Deming JD
    Handb Exp Pharmacol; 2014; 219():117-31. PubMed ID: 24292827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina.
    Deming JD; Pak JS; Shin JA; Brown BM; Kim MK; Aung MH; Lee EJ; Pardue MT; Craft CM
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7618-28. PubMed ID: 26624493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health.
    Deming JD; Pak JS; Brown BM; Kim MK; Aung MH; Eom YS; Shin JA; Lee EJ; Pardue MT; Craft CM
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5407-16. PubMed ID: 26284544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina.
    Zhu X; Brown B; Li A; Mears AJ; Swaroop A; Craft CM
    J Neurosci; 2003 Jul; 23(14):6152-60. PubMed ID: 12853434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Arrestin 1 contributes to cone photoreceptor survival and light adaptation.
    Brown BM; Ramirez T; Rife L; Craft CM
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2372-80. PubMed ID: 20019357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse cones require an arrestin for normal inactivation of phototransduction.
    Nikonov SS; Brown BM; Davis JA; Zuniga FI; Bragin A; Pugh EN; Craft CM
    Neuron; 2008 Aug; 59(3):462-74. PubMed ID: 18701071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1.
    Haire SE; Pang J; Boye SL; Sokal I; Craft CM; Palczewski K; Hauswirth WW; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3745-53. PubMed ID: 16936082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae.
    Renninger SL; Gesemann M; Neuhauss SC
    Eur J Neurosci; 2011 Feb; 33(4):658-67. PubMed ID: 21299656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):12-6. PubMed ID: 15623748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Key Networks Linked to Light-Independent Photoreceptor Degeneration in Visual Arrestin 1 Knockout Mice.
    Kim HS; Huang SP; Lee EJ; Craft CM
    Adv Exp Med Biol; 2018; 1074():281-287. PubMed ID: 29721954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
    Tomizuka J; Tachibanaki S; Kawamura S
    J Biol Chem; 2015 Apr; 290(15):9399-411. PubMed ID: 25713141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity.
    Sutton RB; Vishnivetskiy SA; Robert J; Hanson SM; Raman D; Knox BE; Kono M; Navarro J; Gurevich VV
    J Mol Biol; 2005 Dec; 354(5):1069-80. PubMed ID: 16289201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine receptor D4 internalization requires a beta-arrestin and a visual arrestin.
    Deming JD; Shin JA; Lim K; Lee EJ; Van Craenenbroeck K; Craft CM
    Cell Signal; 2015 Oct; 27(10):2002-13. PubMed ID: 26169958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S; Arinobu D; Shimauchi-Matsukawa Y; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9329-34. PubMed ID: 15958532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine receptors in a population of adult mammalian cones.
    Balse E; Tessier LH; Forster V; Roux MJ; Sahel JA; Picaud S
    J Physiol; 2006 Mar; 571(Pt 2):391-401. PubMed ID: 16396929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.