These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24292831)

  • 1. Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications.
    Shenoy SK
    Handb Exp Pharmacol; 2014; 219():187-203. PubMed ID: 24292831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deubiquitinases and their emerging roles in β-arrestin-mediated signaling.
    Shenoy SK
    Methods Enzymol; 2014; 535():351-70. PubMed ID: 24377933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian α arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with β arrestins.
    Shea FF; Rowell JL; Li Y; Chang TH; Alvarez CE
    PLoS One; 2012; 7(12):e50557. PubMed ID: 23236378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arrestins and protein ubiquitination.
    Kommaddi RP; Shenoy SK
    Prog Mol Biol Transl Sci; 2013; 118():175-204. PubMed ID: 23764054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2.
    Shenoy SK; Modi AS; Shukla AK; Xiao K; Berthouze M; Ahn S; Wilkinson KD; Miller WE; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6650-5. PubMed ID: 19363159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction.
    Jean-Charles PY; Rajiv V; Shenoy SK
    J Cell Physiol; 2016 Oct; 231(10):2071-80. PubMed ID: 26790995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination.
    Jean-Charles PY; Freedman NJ; Shenoy SK
    Prog Mol Biol Transl Sci; 2016; 141():339-69. PubMed ID: 27378762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes.
    Shenoy SK; Lefkowitz RJ
    J Biol Chem; 2005 Apr; 280(15):15315-24. PubMed ID: 15699045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4.
    Shukla AK; Kim J; Ahn S; Xiao K; Shenoy SK; Liedtke W; Lefkowitz RJ
    J Biol Chem; 2010 Sep; 285(39):30115-25. PubMed ID: 20650893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination.
    Shenoy SK; Lefkowitz RJ
    J Biol Chem; 2003 Apr; 278(16):14498-506. PubMed ID: 12574160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development.
    Gurevich EV; Benovic JL; Gurevich VV
    Neuroscience; 2002; 109(3):421-36. PubMed ID: 11823056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Α-arrestins - new players in Notch and GPCR signaling pathways in mammals.
    Puca L; Brou C
    J Cell Sci; 2014 Apr; 127(Pt 7):1359-67. PubMed ID: 24687185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin.
    Yun Y; Yoon HJ; Jeong Y; Choi Y; Jang S; Chung KY; Lee HH
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301934120. PubMed ID: 37399373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Arrestin-mediated receptor trafficking and signal transduction.
    Shenoy SK; Lefkowitz RJ
    Trends Pharmacol Sci; 2011 Sep; 32(9):521-33. PubMed ID: 21680031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-directed interactions with specific beta-arrestins determine mu-opioid receptor trafficking, ubiquitination, and dephosphorylation.
    Groer CE; Schmid CL; Jaeger AM; Bohn LM
    J Biol Chem; 2011 Sep; 286(36):31731-41. PubMed ID: 21757712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of cardiac fibrosis by β-blocker in G protein-independent and G protein-coupled receptor kinase 5/β-arrestin2-dependent Signaling pathways.
    Nakaya M; Chikura S; Watari K; Mizuno N; Mochinaga K; Mangmool S; Koyanagi S; Ohdo S; Sato Y; Ide T; Nishida M; Kurose H
    J Biol Chem; 2012 Oct; 287(42):35669-35677. PubMed ID: 22888001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination.
    Wedegaertner H; Bosompra O; Kufareva I; Trejo J
    Mol Biol Cell; 2023 Aug; 34(9):ar93. PubMed ID: 37223976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation.
    Shenoy SK; Barak LS; Xiao K; Ahn S; Berthouze M; Shukla AK; Luttrell LM; Lefkowitz RJ
    J Biol Chem; 2007 Oct; 282(40):29549-62. PubMed ID: 17666399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors.
    Zhang X; Wang F; Chen X; Li J; Xiang B; Zhang YQ; Li BM; Ma L
    J Neurochem; 2005 Oct; 95(1):169-78. PubMed ID: 16181421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seven-transmembrane receptor signaling through beta-arrestin.
    Shenoy SK; Lefkowitz RJ
    Sci STKE; 2005 Nov; 2005(308):cm10. PubMed ID: 16267056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.