BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24292858)

  • 1. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.
    Hopkinson BM
    Photosynth Res; 2014 Sep; 121(2-3):223-33. PubMed ID: 24292858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum.
    Li M; Young JN
    Photosynth Res; 2023 May; 156(2):205-215. PubMed ID: 36881356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of the CO2-concentrating mechanism of diatoms.
    Hopkinson BM; Dupont CL; Allen AE; Morel FM
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3830-7. PubMed ID: 21321195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach.
    Tolleter D; Chochois V; Poiré R; Price GD; Badger MR
    J Exp Bot; 2017 Jun; 68(14):3915-3924. PubMed ID: 28637277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii.
    Yamano T; Sato E; Iguchi H; Fukuda Y; Fukuzawa H
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7315-20. PubMed ID: 26015566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic and biochemical responses to different concentrations of CO
    Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G
    Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple plasma membrane SLC4s contribute to external HCO3- acquisition during CO2 starvation in the marine diatom Phaeodactylum tricornutum.
    Nawaly H; Matsui H; Tsuji Y; Iwayama K; Ohashi H; Nakajima K; Matsuda Y
    J Exp Bot; 2023 Jan; 74(1):296-307. PubMed ID: 36124754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models of CO2 concentrating mechanisms in microalgae taking into account cell and chloroplast structure.
    Fridlyand LE
    Biosystems; 1997; 44(1):41-57. PubMed ID: 9350356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms.
    Nigishi M; Shimakawa G; Yamagishi K; Amano R; Ito S; Tsuji Y; Nagasato C; Matsuda Y
    Plant Physiol; 2024 May; 195(2):1432-1445. PubMed ID: 38478576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii.
    Wang L; Yamano T; Takane S; Niikawa Y; Toyokawa C; Ozawa SI; Tokutsu R; Takahashi Y; Minagawa J; Kanesaki Y; Yoshikawa H; Fukuzawa H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12586-12591. PubMed ID: 27791081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.