These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 242929)

  • 21. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U; Remme J; Ehrenberg M; Bilgin N
    J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isomeric specificity of aminoacylation of wheat germ transfer ribonucleic acid and the specificity of interaction of elongation factor Tu with aminoacyl transfer ribonucleic acid.
    Julius DJ; Fraser TH; Rich A
    Biochemistry; 1979 Feb; 18(4):604-9. PubMed ID: 217420
    [No Abstract]   [Full Text] [Related]  

  • 23. Functional covalent complex between elongation factor Tu and an analog of lysyl-tRNA.
    Johnson AE; Miller DL; Cantor CR
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3075-9. PubMed ID: 356044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S; Modolell J
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy expenditure in the editing mechanism of protein synthesis [proceedings].
    Mulvey RS; Fersht AR
    Biochem Soc Trans; 1977; 5(3):672-5. PubMed ID: 332559
    [No Abstract]   [Full Text] [Related]  

  • 27. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of mitochondrial elongation factors Tu.Ts with aminoacyl-tRNA.
    Benkowski LA; Takemoto C; Ott G; Beikman M; Ueda T; Watanabe K; Sprinzl M; Spremulli LL
    Nucleic Acids Symp Ser; 1995; (33):163-6. PubMed ID: 8643359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ternary complexes of Escherichia coli aminoacyl-tRNAs with the elongation factor Tu and GTP: thermodynamic and structural studies.
    Ott G; Schiesswohl M; Kiesewetter S; Förster C; Arnold L; Erdmann VA; Sprinzl M
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):222-5. PubMed ID: 2207146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The reliability of in vivo structure-function analysis of tRNA aminoacylation.
    McClain WH; Jou YY; Bhattacharya S; Gabriel K; Schneider J
    J Mol Biol; 1999 Jul; 290(2):391-409. PubMed ID: 10390340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Rate limitations in the elongation working cycle and the action mechanisms of GTP-complexed elongation protein factors].
    Potapov AP
    Mol Biol (Mosk); 1982; 16(1):28-33. PubMed ID: 6917939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The determination of binding parameters from protection experiments. A quantitative assay for ternary complex formation of elongation factor Tu, GTP, and aminoacyl-tRNA.
    Pingoud A; Urbanke C
    Anal Biochem; 1979 Jan; 92(1):123-7. PubMed ID: 254564
    [No Abstract]   [Full Text] [Related]  

  • 33. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.
    Bhuta P; Chládek S
    Biochim Biophys Acta; 1982 Aug; 698(2):167-72. PubMed ID: 6127109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems.
    Chinali G; Nyssen E; Di Giambattista M; Cocito C
    Biochim Biophys Acta; 1988 Nov; 951(1):42-52. PubMed ID: 3142522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO
    Mol Biol (Mosk); 1984; 18(1):205-26. PubMed ID: 6423966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation and characterization of yeast elongation factors.
    Skogerson L
    Methods Enzymol; 1979; 60():676-85. PubMed ID: 379539
    [No Abstract]   [Full Text] [Related]  

  • 38. Stoichiometry of polypeptide chain elongation.
    Cabrer B; San-Millian MJ; Vazquez D; Modolell J
    J Biol Chem; 1976 Mar; 251(6):1718-22. PubMed ID: 767339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical research on oogenesis. Aminoacyl tRNA turns over in the 42-S particles of Xenopus laevis oocytes, but its ester bond is protected against hydrolysis.
    Denis H; le Maire M
    Eur J Biochem; 1985 Jun; 149(3):549-56. PubMed ID: 3847348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct and specific photochemical cross-linking of adenosine 5'-triphosphate to an aminoacyl-tRNA synthetase.
    Yue VT; Schimmel PR
    Biochemistry; 1977 Oct; 16(21):4678-84. PubMed ID: 334247
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.