These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24293030)

  • 1. A framework for correcting brain retraction based on an eXtended Finite Element Method using a laser range scanner.
    Li P; Wang W; Song Z; An Y; Zhang C
    Int J Comput Assist Radiol Surg; 2014 Jul; 9(4):669-81. PubMed ID: 24293030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D XFEM-based modeling of retraction and successive resections for preoperative image update.
    Vigneron LM; Duflot MP; Robe PA; Warfield SK; Verly JG
    Comput Aided Surg; 2009; 14(1-3):1-20. PubMed ID: 19634040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
    Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D XFEM-based modeling of retraction for preoperative image update.
    Vigneron LM; Warfield SK; Robe PA; Verly JG
    Comput Aided Surg; 2011; 16(3):121-34. PubMed ID: 21476788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of geometric distortion effects on intraoperative magnetic resonance imaging for enhanced visualization in image-guided neurosurgery.
    Archip N; Clatz O; Whalen S; Dimaio SP; Black PM; Jolesz FA; Golby A; Warfield SK
    Neurosurgery; 2008 Mar; 62(3 Suppl 1):209-15; discussion 215-6. PubMed ID: 18424988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Investigation of the Effectiveness of a Hyper-viscoelastic Model in Simulating Brain Retraction.
    Li P; Wang W; Zhang C; An Y; Song Z
    Sci Rep; 2016 Jul; 6():28654. PubMed ID: 27387301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
    Miga MI; Sun K; Chen I; Clements LW; Pheiffer TS; Simpson AL; Thompson RC
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1467-74. PubMed ID: 26476637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of thin-plate spline deformation and finite element modeling to compensate for brain shift during tumor resection.
    Frisken S; Luo M; Juvekar P; Bunevicius A; Machado I; Unadkat P; Bertotti MM; Toews M; Wells WM; Miga MI; Golby AJ
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):75-85. PubMed ID: 31444624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical modelling and computer aided simulation of deep brain retraction in neurosurgery.
    Awasthi A; Gautam U; Bhaskar S; Roy S
    Comput Methods Programs Biomed; 2020 Dec; 197():105688. PubMed ID: 32861182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction.
    Chen I; Ong RE; Simpson AL; Sun K; Thompson RC; Miga MI
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3494-504. PubMed ID: 23864146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new markerless patient-to-image registration method using a portable 3D scanner.
    Fan Y; Jiang D; Wang M; Song Z
    Med Phys; 2014 Oct; 41(10):101910. PubMed ID: 25281962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of retraction and resection for intraoperative updating of images.
    Miga MI; Roberts DW; Kennedy FE; Platenik LA; Hartov A; Lunn KE; Paulsen KD
    Neurosurgery; 2001 Jul; 49(1):75-84; discussion 84-5. PubMed ID: 11440463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of accuracy of non-linear finite element computations for surgical simulation: study using brain phantom.
    Ma J; Wittek A; Singh S; Joldes G; Washio T; Chinzei K; Miller K
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):783-94. PubMed ID: 21153973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo quantification of retraction deformation modeling for updated image-guidance during neurosurgery.
    Platenik LA; Miga MI; Roberts DW; Lunn KE; Kennedy FE; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):823-35. PubMed ID: 12148821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking.
    Cash DM; Sinha TK; Chapman WC; Terawaki H; Dawant BM; Galloway RL; Miga MI
    Med Phys; 2003 Jul; 30(7):1671-82. PubMed ID: 12906184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against BSpline registration.
    Mostayed A; Garlapati RR; Joldes GR; Wittek A; Roy A; Kikinis R; Warfield SK; Miller K
    Ann Biomed Eng; 2013 Nov; 41(11):2409-25. PubMed ID: 23771299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a generic real-time compression correction framework for tracked ultrasound.
    Pheiffer TS; Miga MI
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1777-92. PubMed ID: 25903777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust brain deformation framework based on a finite element model in IGNS.
    Liu Y; Song Z
    Int J Med Robot; 2008 Jun; 4(2):146-57. PubMed ID: 18383503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-deformation framework based on a linear elastic model and evaluation using clinical data.
    Zhang C; Wang M; Song Z
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):191-9. PubMed ID: 20805048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.
    Hagemann A; Rohr K; Stiehl HS
    Med Image Anal; 2002 Dec; 6(4):375-88. PubMed ID: 12426110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.