BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 24293210)

  • 1. Labile carbon retention compensates for CO2 released by priming in forest soils.
    Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y
    Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.
    Wang H; Xu W; Hu G; Dai W; Jiang P; Bai E
    Oecologia; 2015 Aug; 178(4):1239-50. PubMed ID: 25790803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil-specific response functions of organic matter mineralization to the availability of labile carbon.
    Paterson E; Sim A
    Glob Chang Biol; 2013 May; 19(5):1562-71. PubMed ID: 23505211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of salinity effects on past, present, and future soil organic carbon stocks.
    Setia R; Smith P; Marschner P; Gottschalk P; Baldock J; Verma V; Setia D; Smith J
    Environ Sci Technol; 2012 Feb; 46(3):1624-31. PubMed ID: 22191398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of labile carbon addition on organic carbon mineralization and microbial growth strategies in subtropical forest soils.].
    Liao C; Tian QX; Wang DY; Qu LY; Wu Y; Liu F
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2848-2854. PubMed ID: 29732847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years.
    Zhang X; Han X; Yu W; Wang P; Cheng W
    PLoS One; 2017; 12(9):e0184978. PubMed ID: 28934287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.
    Guillaume T; Damris M; Kuzyakov Y
    Glob Chang Biol; 2015 Sep; 21(9):3548-60. PubMed ID: 25707391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.
    Griepentrog M; Eglinton TI; Hagedorn F; Schmidt MW; Wiesenberg GL
    Glob Chang Biol; 2015 Jan; 21(1):473-86. PubMed ID: 24953725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated soil carbon turnover under tree plantations limits soil carbon storage.
    Chen G; Yang Y; Yang Z; Xie J; Guo J; Gao R; Yin Y; Robinson D
    Sci Rep; 2016 Jan; 6():19693. PubMed ID: 26805949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.
    Ding F; Huang Y; Sun W; Jiang G; Chen Y
    PLoS One; 2014; 9(4):e95348. PubMed ID: 24736659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aboveground and belowground litter inputs on the balance of soil new and old organic carbon under the typical forests in subtropical region.
    Hong XM; Wei Q; Li MJ; Yu TW; Yan Q; Hu YL
    Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):825-835. PubMed ID: 33754547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
    Lin J; Zhu B; Cheng W
    Glob Chang Biol; 2015 Dec; 21(12):4602-12. PubMed ID: 26301625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil salinity decreases global soil organic carbon stocks.
    Setia R; Gottschalk P; Smith P; Marschner P; Baldock J; Setia D; Smith J
    Sci Total Environ; 2013 Nov; 465():267-72. PubMed ID: 22959898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating effects of changing climate and CO(2) emissions on soil carbon pools at the Hubbard Brook experimental forest.
    Dib AE; Johnson CE; Driscoll CT; Fahey TJ; Hayhoe K
    Glob Chang Biol; 2014 May; 20(5):1643-56. PubMed ID: 24132912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global pattern of soil priming effect intensity and its environmental drivers.
    Mo F; Ren C; Yu K; Zhou Z; Phillips RP; Luo Z; Zhang Y; Dang Y; Han J; Ye JS; Vinay N; Liao Y; Xiong Y; Wen X
    Ecology; 2022 Nov; 103(11):e3790. PubMed ID: 35718753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil.
    Tian J; Dungait JAJ; Lu X; Yang Y; Hartley IP; Zhang W; Mo J; Yu G; Zhou J; Kuzyakov Y
    Glob Chang Biol; 2019 Oct; 25(10):3267-3281. PubMed ID: 31273887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China.
    Yang L; Pan J; Shao Y; Chen JM; Ju WM; Shi X; Yuan S
    J Environ Manage; 2007 Nov; 85(3):690-5. PubMed ID: 17107746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of soil organic carbon to priming after long-term CO
    Xu Q; Jin J; Wang X; Armstrong R; Tang C
    Sci Total Environ; 2019 Mar; 657():1112-1120. PubMed ID: 30677878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.
    Setia R; Smith P; Marschner P; Baldock J; Chittleborough D; Smith J
    Environ Sci Technol; 2011 Aug; 45(15):6396-403. PubMed ID: 21671665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.